Project description:Clostridium ljungdahlii derives energy by acetogenesis as a lithotrophic pathway and as part of various organotrophic pathways. Its recently sequenced genome has made it possible to discover changes in gene expression that occur in different growth modes, from which strategies for biofuel production may be developed. C. ljungdahlii was grown with fructose as an organoheterotrophic substrate and also lithoautotrophically, either on syngas or with H2 as the electron donor and CO2 as the electron acceptor. RNA extracted from all three conditions was analyzed by hybridization to a microarray, and gene expression was compared quantitatively by RNA-Seq of C. ljungdahlii grown with fructose and with H2 and CO2. Results. Strongly upregulated (> 10-fold, p < 0.05) genes with both syngas and H2/CO2 encode enzymes that degrade aspartate and arginine through the urea cycle to control the release of ammonia from amino acids. Numerous genes for uptake and degradation of peptides and amino acids, response to sulfur starvation, and molybdopterin-dependent pathways were also significantly (> 2-fold, p < 0.05) upregulated, along with three potentially NADPH-producing pathways for which the key metabolites are (S)-malate, ornithine and 6-phospho-D-gluconate. Upregulation of genes implicated in quorum sensing, sporulation and cell wall remodeling suggests a global and multicellular response to lithoautotrophic conditions. With syngas, (R)-lactate dehydrogenase and associated electron transfer flavoproteins were upregulated, representing a route of electron transfer from ferredoxin to NAD that is independent of the proton-translocating Rnf complex. With H2/CO2, a flavodoxin and histidine biosynthesis enzymes were upregulated. Genes for degradation of purine bases entering the cell by facilitated diffusion were upregulated in lithotrophic cells, whereas genes for degradation of adenine or adenosine derivatives entering by active transport were significantly (2-fold, p < 0.05) downregulated. The most downregulated genes, after those specific to fructose metabolism, encode enzymes of pyrimidine and purine biosynthesis, arginine fermentation to ornithine, threonine biosynthesis and phosphate uptake. Genes for biogenesis of an intracytoplasmic microcompartment were downregulated, within which (S)-1,2-propanediol dehydratase and other enzymes may dispose of methylglyoxal, a toxic byproduct of glycolysis, as 1-propanol. Several redox-active proteins, both cytoplasmic and membrane-associated, and predicted cell surface proteins were identified as differentially regulated. Conclusion. The transcriptomic profiles of C. ljungdahlii in lithoautotrophic and organoheterotrophic growth modes indicate large-scale physiological and metabolic differences, observations that may guide the production of biofuels and commodity chemicals with this species.
Project description:Clostridium ljungdahlii not only utilizes CO, but also H2 as energy source during autotrophic growth. In theory, CO is a more energetically and thermodynamically favourable energy source than H2 in the gas fermentation of C. ljungdahlii. However, how C. ljungdahlii conserves energy for growth and ethanol/acetate formation grown on CO or CO2/H2 is not in great detail. In this study, C. ljungdahlii was fermented on CO and CO2/ H2 at pH 6.0 with 0.1 MPa gas pressure. C. ljungdahlii produced 27 g/L acetate, 9 g/L ethanol, 8 g/L 2,3-butanediol and traces of lactate in the presence of CO as energy source, while it produced 25.8 0.1 g/L acetate, 1.8 0.1 g/L ethanol, 0.7 0.01g/L 2,3-butanediol and trances of lactate in the same fermentation condition using H2 as energy source. Therefore, comparative transcriptomes between cells grown on CO and cells grown on H2/CO2 were performed to investigate gene expression profiles based on three biological replicates.
Project description:Conversion of biomass-derived syngas (gaseous mixture of mainly H2, CO and CO2) to methane might be a sustainable alternative for the biofuel industry. Via the syngas route more methane can be produced from biomass than via conventional anaerobic digestion. Methanogenic archaea are key players in syngas conversion, but only a few are known to utilize CO (or syngas). Methanothermobacter thermoautotrophicus is one of the few hydrogenotrophic methanogens which has been observed to grow on CO. However, carboxydotrophic growth is slow and is reported to be readily inhibited above 50 kPa CO. The aim of this work was to get more insight of the CO metabolism in hydrogenotrophic archaea and to assess the potential toxic effects of CO towards these microorganisms. Archaeal genomic databases were searched for putative homologues of the Methanothermobacter thermoautotrophicus CODH alpha subunit (containing the catalytic site): the highest scores were for the CODH subunits of Methamothermobacter marburgensis (93% identity) and Methanococcus maripaludis (71%). M. thermoautotrophicus and the other two potential carboxydotrophic strains were incubated with CO and CO + H2 as sole substrates. In addition to M. thermoautotrophicus, M. marburgensis was able to grow methanogenically on CO alone and on CO + H2. In contrast to M. thermoautotrophicus, M. marburgensis was not as strongly inhibited when grown in presence of CO alone and was able to adapt its metabolism, shifting its lag phase from ~500 to ~100 hours. It was observed for both strains that presence of hydrogen stimulates the carbon monoxide metabolism. To gain further insight, the proteome of M. marburgensis culture grown on H2 + CO2 and H2 + CO2 + CO were analysed. Cultures grown with H2 + CO showed relative higher abundance of enzymes involved in CODH/ACS associated reactions and reactions involved in redox metabolism. Overall, the data suggests the strong reducing capacity of CO inhibits the hydrogenotrophic methanogen, making growth on CO as a sole substrate difficult for these organisms.
Project description:Background: The global demand for affordable carbon has never been stronger, and there is an imperative in many industrial processes to use waste streams to make products. Gas-fermenting acetogens offer a potential solution and several commercial gas fermentation plants are currently under construction. As energy limits acetogen metabolism, supply of H2 should diminish substrate loss to CO2 and facilitate production of reduced and energy-intensive products. However, the effects of H2 supply on CO-grown acetogens have yet to be experimentally quantified under controlled growth conditions. Results: Here, we quantify the effects of H2 supplementation by comparing growth on CO, syngas, and a high-H2 CO gas mix using chemostat cultures of Clostridium autoethanogenum. Cultures were characterised at the molecular level using metabolomics, proteomics, gas analysis, and a genome-scale metabolic model (GEM). CO-limited chemostats operated at two steady-state biomass concentrations facilitated co-utilisation of CO and H2. We show that H2 supply strongly impacts carbon distribution with a four-fold reduction in substrate loss as CO2 (61% vs. 17%) and a proportional increase of flux to ethanol (15% vs. 61%). Notably, H2 supplementation lowers the molar acetate/ethanol ratio by five-fold. At the molecular level, quantitative proteome analysis showed no obvious changes leading to these metabolic rearrangements suggesting the involvement of post-translational regulation. Metabolic modelling showed that H2 availability provided reducing power via H2 oxidation and saved redox as cells reduced all the CO2 to formate directly using H2 in the Wood-Ljungdahl pathway. Modelling further indicated that the methylene-THF reductase reaction was ferredoxin-reducing under all conditions. In combination with proteomics, modelling also showed that ethanol was synthesised through the acetaldehyde:ferredoxin oxidoreductase (AOR) activity. Conclusions: Our quantitative molecular analysis revealed that H2 drives rearrangements at several layers of metabolism and provides novel links between carbon, energy, and redox metabolism advancing our understanding of energy conservation in acetogens. We conclude that H2 supply can substantially increase the efficiency of gas fermentation and thus the feed gas composition can be considered an important factor in developing gas fermentation-based bioprocesses.