Project description:Human ES (H9) cells were directed towards a neuromesodermal progenitor-like cell state and these cells were then subsequently differentiated towards a neural cell fate. Human ES cells (H9) were differentiated into neuromesodermal progenitor-like cells by culturing in Neurobasal/1x N2/1x B27 medium (N2/B27) supplemented with 20 ng/ml bFgf and 3 μM CHIR99021 for 3 days and exposure to dual SMAD inhibition (dSMADi) (Noggin 50 ng/ml and the TGFb receptor type 1 inhibitor SB431542 10 μM) during day 3 (D3). Transcriptome analysis was then carried out following a selection procedure to enrich for NMP-like cells (sD3/NMP-like). This involved use of a hES (H9) cell line engineered with CRISPR-Cas9 to express GFP under the control of the endogenous Nkx1.2 promoter. At the end of day 3 cells were selected for high GFP expression, as high Nkx1.2 transcription is characteristic of NMP cell populations in mouse and chick embryos. These cells were then lysed and RNA extracted for RNASeq. Humans ES cells (H9) differentiated into NMP-like cells as above (without selection) were also allowed to develop further on day 4 (in the presence of dSMADi and Retinoic acid (RA) 100nM, in N2/B27) and then in RA alone until end of day 8 (D8). These cells were then lysed and RNA extracted for RNASeq.
Project description:Purpose: Compare the transcriptome of homogeneous XIST+ and XIST- hES cell populations. Methods: We isolated homogeneous XIST+ and XIST- cell populations. The XIST+ cells correspond to cells with a XIST cloud and one ATRX pinpoint. The XIST- cells correspond to cells with no XIST cloud and one ATRX pinpoint. Results: We took advantage of the clonal pattern of X-chromosome inactivation in H9 cells and analyzed the data in an allelic manner. By comparing the RNA-Seq data with known H9 SNPs, we identified genomic positions which were relaxed from XCI in XIST- cells compared to XIST+ cells. Conclusions: Genic as well as unannotated transcripts are massively relaxed from XCI in H9 cells when XIST expression is lost, however, this reactivation is only partial and a large region around the centromere is protected from relaxation of silencing.
Project description:To identify gene expression changes associated with overexpression of miR-105 or MYC in MCF10A non-cancerous human mammary epithelial cells, we analyzed RNA isolated from engineered MCF10A cell lines that stably express empty vector, GFP, miR-105, or MYC by RNA-seq. Gene expression in cells overexpressing miR-105 or MYC was compared to cells expressing the empty vector or GFP, both of which served as controls in this experiment.
Project description:By using co-immunoprecipitation (Co-IP) assays with LBR-GFP-expressing mitotic cell extracts followed by MS, we identified the tether protein which linked the mitochondria and ER together in mitosis.
Project description:Purpose: Compare the transcriptome of homogeneous XIST+ and XIST- hES cell populations. Methods: We isolated homogeneous XIST+ and XIST- cell populations. The XIST+ cells correspond to cells with a XIST cloud and one ATRX pinpoint. The XIST- cells correspond to cells with no XIST cloud and one ATRX pinpoint. Results: We took advantage of the clonal pattern of X-chromosome inactivation in H9 cells and analyzed the data in an allelic manner. By comparing the RNA-Seq data with known H9 SNPs, we identified genomic positions which were relaxed from XCI in XIST- cells compared to XIST+ cells. Conclusions: Genic as well as unannotated transcripts are massively relaxed from XCI in H9 cells when XIST expression is lost, however, this reactivation is only partial and a large region around the centromere is protected from relaxation of silencing. Total RNA (rRNA depleted) profiles of XIST+ and XIST- human embryonic stem cells
Project description:hES cells display an excellent model to study the developmental mechanisms occuring in vivo both at genetic and epigenetic levels. hES cell line were subjected to global transcriptome analysis to study the differentiation patterns during differentiation of pluripotent hES cells into cardic progenitors and beating cardiomyocytes.
Project description:Briefly, the well characterized female hES cell line H9 was allowed to differentiate into a clonally purified mortal splanchnopleuric mesodermal somatic cell line EN13. The EN13 line was subsequently virally reprogrammed back to an induced pluripotent state (we term re-H9) using OCT4, SOX2, KLF4 retroviral vectors creating isogenic lines of hESC, hiPSC and mortal cells. Our results reveal several important differences between embryo-derived H9 and the induced re-H9 stem cells. We find a dysregulation of genes involved in imprinting and altered expression of X-chromosome localized genes in re-H9 cells.
Project description:A doxycyline-inducible INS-1 insulinoma cell line expressing proinsulin (C96Y)-GFP was engineered. Addition of doxycyline causes the production of the proinsulin (C96Y)-GFP, which is retained in the endoplasmic reticulum. This study analyzes the gene expression changes that occur after doxycyline-induced expression of proinsulin (C96Y)-GFP for 24h, 48h and 5 days. Expression changes were compared between control un-induced cells and cells treated with doxycyline. Three replicates (experiments) were performed for each time point.