Project description:The present study focuses on the use of a metaproteomic approach to analyse Black Extrinsic Tooth Stains, a specific type of pigmented extrinsic substance, in a cohort of 96 Children. Metaproteomics is a powerful emerging technology that successfully enabled human protein and bacterial identification of this specific dental biofilm using mass spectrometry. 1600 bacterial proteins were identified in black stains (BS) samples and 2058 proteins in dental plaque (DP) samples whereas 607 and 582 human proteins identified in (BS and DP, respectively). 132 genera bacteria in black stains and dental plaque were identified using phylopeptidomic analysis, showing prevalence of Rothia, Kingella, Nesseria and Pseudopropionibatcterium in black stains samples. We additionally confirmed the metaproteomic approach by performing 16S rRNA. In this work, we showed an interesting diversity of the microbiota and proteome including significant difference between Black stain and dental plaque samples.
Project description:We performed microarray CGH analysis of 104 neuropathogenic and enteritis only stains of C. jejuni. Keywords: Individual hybridizations, CGH
Project description:The genetic foundation of chicken tail feather color is not very well studied to date, though that of body feather color is extensively explored. In the present study, we used a synthetic chicken dwarf line (DW), which was originated from the hybrids between a black tail chicken breed, Rhode Island Red (RIR) and a white tail breed, Dwarf Layer (DL), to understand the genetic rules of the white/black tail color. The DW line still contain the individuals with black or white tails, even if the body feather are predominantly red, after more than ten generation of self-crossing and being selected for the body feather color. We firstly performed four crosses using the DW line chickens including black tail male to female, reciprocal crosses between the black and white, and white male to female to elucidate the inheritance pattern of the white/black tail. We found that (i) the white/black tail feather colors are independent of body feather color and (ii) the phenotype are autosomal simple trait and (iii) the white are dominant to the black in the DW lines. Furtherly, we performed a genome-wide association (GWA) analysis to determine the candidate genomic regions underlying the tail feather color by using black tail chickens from the RIR and DW chickens and white individuals from DW lines.