Project description:Deviating from the normal karyotype dramatically changes gene dosage, in turn decreasing the robustness of biological networks. Consequently, aneuploidy is poorly tolerated by normal somatic cells and acts as a barrier to transformation. Paradoxically, however, karyotype heterogeneity drives tumor evolution and the emergence of therapeutic drug resistance. To better understand how cancer cells tolerate aneuploidy, we focused on the p38 stress response kinase. We show here that p38-deficient cells upregulate glycolysis and avoid post-mitotic apoptosis, leading to the emergence of aneuploid subclones. We also show that p38 deficiency upregulates the hypoxia-inducible transcription factor Hif-1α and that inhibiting Hif-1α restores apoptosis in p38-deficent cells. Because hypoxia and aneuploidy are both barriers to tumor progression, the ability of Hif-1α to promote cell survival following chromosome missegregation raises the possibility that aneuploidy tolerance coevolves with adaptation to hypoxia.
Project description:Energy metabolism programming is a hallmark of cancer, and serves as a potent target of cancer therapy. Valproic acid (VPA), a broad Class I histone deacetylases (HDACs) inhibitor, has been used as a therapeutic agent for cancer. However, the detail mechanism about the potential role of VPA on the Warburg effect in breast cancer remains unclear. In this study, we highlight that VPA significantly attenuates the Warburg effect by decreasing the expression of pyruvate kinase M2 isoform (PKM2), leading to inhibited cell proliferation and reduced colony formation in breast cancer MCF-7 and MDA-MB-231 cells. Mechanistically, Warburg effect suppression triggered by VPA was mediated by inactivation of ERK1/2 phosphorylation through reduced HDAC1 expression, resulting in suppressing breast cancer growth. In summary, we uncover a novel mechanism of VPA in regulating the Warburg effect which is essential for developing the effective approach in breast cancer therapy.
Project description:Hyperactivation of YAP has been commonly associated with tumorigenesis, and emerging evidence hints at multilayered Hippo-independent regulations of YAP. In this study, we identified a new MST4-YAP axis, which acts as a noncanonical Hippo signaling pathway that limits stress-induced YAP activation. MST4 kinase directly phosphorylated YAP at Thr83 to block its binding with importin α, therefore leading to YAP cytoplasmic retention and inactivation. Due to a consequential interplay between MST4-mediated YAP phospho-Thr83 signaling and the classical YAP phospho-Ser127 signaling, the phosphorylation level of YAP at Thr83 was correlated to that at Ser127. Mutation of T83E mimicking MST4-mediated alternative signaling restrained the activity of both wild-type YAP and its S127A mutant mimicking loss of classical Hippo signal. Depletion of MST4 in mice promoted gastric tumorigenesis with diminished Thr83 phosphorylation and hyperactivation of YAP. Moreover, loss of MST4-YAP signaling was associated with poor prognosis of human gastric cancer. Collectively, our study uncovered a noncanonical MST4-YAP signaling axis essential for suppressing gastric tumorigenesis.
Project description:The p38 mitogen-activated protein kinase (p38) is a key signaling pathway involved in regulation of inflammatory cytokines. Unexpectedly, several clinical studies using p38 inhibitors found no convincing clinical efficacy in the treatment of chronic inflammation. It was the objective of this study to characterize the population pharmacokinetics (PK) of BCT197 in healthy volunteers and to examine the relationship between BCT197 exposure and pharmacodynamics (PD) measured as inhibition of ex vivo lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF?), a downstream marker of p38 activity. PK was characterized using a two-compartment model with mixed-order absorption and limited-capacity tissue binding. The PK-PD relationship revealed that suppression of TNF? was partly offset over time, despite continuous drug exposure. This may indicate a mechanism by which the inflammatory response acquires the ability to bypass p38. Simulations of posology dependence in drug effect suggest that an intermittent regimen may offer clinical benefit over continuous dosing and limit the impact of tolerance development.
Project description:In the early stages of lung development, the endoderm undergoes extensive and stereotypic branching morphogenesis. During this process, a simple epithelial bud develops into a complex tree-like system of tubes specialized for the transport and exchange of gas with blood. The endodermal cells in the distal tips of the developing lung express a special set of genes, have a higher proliferation rate than proximal part, undergo shape change and initiate branching morphogenesis. In this study, we found that of the four p38 genes, only p38 alpha mRNA is localized specifically to the distal endoderm suggesting a role in the regulation of budding morphogenesis. Chemical inhibitors specific for the p38 alpha and p38 beta isoforms suppress budding of embryonic mouse lung explants and isolated endoderm in vitro. Specific knockdown of p38 alpha in cultured lung endoderm using shRNA also inhibited budding morphogenesis, consistent with the chemical inhibition of the p38 signaling pathway. Disruption of p38 alpha did not affect proliferation or expression of the distal cell markers, Sox9 and Erm. However, the amount of E-cadherin protein increased significantly and ectopic expression of E-cadherin also impaired budding of endoderm in vitro. These results suggest that p38 alpha modulates epithelial cell-cell interactions and possibly cell rearrangement during branching morphogenesis. This study provides the first evidence that p38 alpha is involved in the morphogenesis of an epithelial organ.
Project description:Aneuploidy-or an unbalanced karyotype in which whole chromosomes are gained or lost-causes reduced fitness at both the cellular and organismal levels but is also a hallmark of human cancers. Aneuploidy causes a variety of cellular stresses, including genomic instability, proteotoxic and oxidative stresses, and impaired protein trafficking. The deubiquitinase Ubp3, which was identified by a genome-wide screen for gene deletions that impair the fitness of aneuploid yeast, is a key regulator of aneuploid cell homeostasis. We show that deletion of UBP3 exacerbates both karyotype-specific phenotypes and global stresses of aneuploid cells, including oxidative and proteotoxic stress. Indeed, Ubp3 is essential for proper proteasome function in euploid cells, and deletion of this deubiquitinase leads to further proteasome-mediated proteotoxicity in aneuploid yeast. Notably, the importance of UBP3 in aneuploid cells is conserved. Depletion of the human homolog of UBP3, USP10, is detrimental to the fitness of human cells upon chromosome missegregation, and this fitness defect is accompanied by autophagy inhibition. We thus used a genome-wide screen in yeast to identify a guardian of aneuploid cell fitness conserved across species. We propose that interfering with Ubp3/USP10 function could be a productive avenue in the development of novel cancer therapeutics.
Project description:p38 kinases are members of the mitogen-activated protein kinase family that transduce signals from various environmental stresses, growth factors, and steroid hormones. p38 is highly expressed in aggressive and invasive breast cancers. Increased levels of activated p38 are markers of poor prognosis. In this study, we tested the hypothesis that blockade of p38 signaling would inhibit breast cancer cell proliferation. We studied breast cancer cell proliferation and cell cycle regulation upon p38 blockade by using three independent approaches: dominant-negative (DN) constructs, small interfering RNA (siRNA), and small molecule inhibitors. p38alpha and p38delta are the most abundant isoforms expressed by all examined human breast tumors and breast cancer cell lines. Expression of a DN p38 inhibited both anchorage-dependent and -independent proliferation of MDA-MB-468 cells. Silencing of p38alpha, but not p38delta, using siRNA suppressed MDA-MB-468 cell proliferation. Pharmacologic inhibitors of p38 significantly inhibited the proliferation of p53 mutant and ER-negative breast cancer cells. Whereas p38 has previously been considered as a mediator of stress-induced apoptosis, we propose that p38 may have dual activities regulating survival and proliferation depending on the expression of p53. Our data suggest that p38 mediates the proliferation signal in breast cancer cells expressing mutant but not wild-type p53. Because most ER-negative breast tumors express mutant p53, our results provide the foundation for future development of p38 inhibitors to target p38 for the treatment of p53 mutant and ER-negative breast cancers.
Project description:Candida species are the most common human fungal pathogens worldwide. Although C. albicans remains the predominant cause of candidiasis, infections caused by non-albicans Candida species, including C. parapsilosis, are increasing. In C. albicans, genome plasticity has been shown to be a prevalent strategy of adaptation to stresses. However, the role of aneuploidy in C. parapsilosis is largely unknown. In this study, we found that six different aneuploid karyotypes conferred adaptation to the endoplasmic reticulum stress inducer tunicamycin (TUN) in C. parapsilosis. Interestingly, a specific aneuploidy including trisomy of chromosome 6 (Chr6x3) also enabled cross-tolerance to aureobasidin A (AbA), a sphingolipid biosynthesis inhibitor. Consistent with this, selection on AbA identified adaptors with three different aneuploid karyotypes, including Chr6x3, which also enabled cross-tolerance to both AbA and TUN. Therefore, as in other Candida species, recurrent aneuploid karyotypes enable the adaptation of C. parapsilosis to specific stresses, and specific aneuploidies enable cross-adaptation to different stresses. IMPORTANCE Candida parapsilosis is an emerging human fungal pathogen, especially prevalent in neonates. Aneuploidy, having uneven numbers of chromosomes, is a well-known mechanism for adapting to stress in Candida albicans, the most common human fungal pathogen. In this study, we exposed C. parapsilosis to two very different drugs and selected for rare cells that grew in one of the drugs. We found that the majority of isolates that grew in the drugs had acquired an extra copy of one of several aneuploid chromosomes and that specific aneuploid chromosomes appeared in several independent cell clones. Importantly, an extra copy of chromosome 6 was detected following selection in either one of the drugs, and this extra chromosome conferred the ability to grow in both drugs, a property called cross-adaptation, or cross-tolerance. Thus, this study highlights the genome plasticity of C. parapsilosis and the ability of an extra copy of a single chromosome to promote cell growth in the presence of more than one drug.
Project description:The spindle assembly checkpoint (SAC) is essential for proper sister chromatid segregation. Defects in this checkpoint can lead to chromosome missegregation and aneuploidy. An increasing body of evidence suggests that aneuploidy can play a causal role in tumorigenesis. However, mutant mice that are prone to aneuploidy have only mild tumor phenotypes, suggesting that there are limiting factors in the aneuploidy-induced tumorigenesis. Here we provide evidence that p53 is such a limiting factor. We show that aneuploidy activates p53 and that loss of p53 drastically accelerates tumor development in two independent aneuploidy models. The p53 activation depends on the ataxia-telangiectasia mutated (ATM) gene product and increased levels of reactive oxygen species. Thus, the ATM-p53 pathway safeguards not only DNA damage but also aneuploidy.
Project description:ObjectiveThe aim of this study was to preliminarily evaluate an oral small molecule p38α kinase inhibitor in patients with early Alzheimer's disease (AD) for the effects on brain amyloid plaque load and episodic memory function, and to establish pharmacokinetic-pharmacodynamics correlations if any effects identified on these parameters.MethodsSixteen patients with early AD received a highly selective p38α inhibitor (neflamapimod) for 84 days (12 weeks). To obtain a broad range of plasma drug exposures, subjects randomized to receive either 40 mg (n = 9) or 125 mg (n = 7) twice daily. Dynamic, 11C-PiB positron emission scans were performed at baseline and at Day 84 and quantitatively analyzed by reference parametric mapping. Episodic memory assessed as Wechsler Memory Scale (WMS) immediate and delayed recall composites.ResultIn the 11C-PiB analyses there were no main group level effects, though in the prespecified responder analysis (>7% reduction in 11C-PiB signal) there were three responders in the 40 mg, and one in the 125 mg group. There were statistically significant increases from baseline in mean WMS immediate recall score and WMS delayed recall at both day 28 (P = 0.03 and P = 0.001) and day 84 (P = 0.001 and P < 0.001). Individual subject plasma drug concentration profiles were significantly positively correlated with the change in combined WMS immediate and delayed recall (P < 0.0001, r2 = 0.70). Within-subject effect size was 0.59 for immediate recall and 0.67 for delayed recall.InterpretationSelective p38α inhibition in patients with early AD may improve episodic memory and potentially impact β-amyloid production. These preliminary clinical findings support conduct of a longer duration placebo-controlled study, particularly to confirm the effects on episodic memory function.