Project description:We have isolated and characterized several bacteriophages infecting Pseudomonas aeruginosa distantly related to Felix O1 virus and proposed they form a new subfamily named Felixounavirinae. The infectious cycle of bacteriophages belonging to this subfamily has not been studied yet in terms of gene expression. The present study reports the RNA-Seq analysis of bacteriophage PAK_P4 infecting PAK strain of P. aeruginosa.
Project description:We have isolated and characterized several bacteriophages infecting Pseudomonas aeruginosa distantly related to Felix O1 virus and proposed they form a new subfamily named Felixounavirinae. The infectious cycle of bacteriophages belonging to this subfamily has not been studied yet in terms of gene expression. The present study reports the RNA-Seq analysis of bacteriophage PAK_P3 infecting PAK strain of P. aeruginosa.
Project description:We have isolated and characterized several bacteriophages infecting Pseudomonas aeruginosa distantly related to Felix O1 virus and proposed they form a new subfamily named Felixounavirinae. The infectious cycle of bacteriophages belonging to this subfamily has not been studied yet in terms of gene expression. The present study reports the RNA-Seq analysis of bacteriophage PAK_P3 infecting PAK strain of P. aeruginosa. RNA profile of Host and Phage at 0min, 3.5min and 13 min after infection of Pseudomonas aeruginosa PAK strain with the Pseudomonas phage PAK P3. Three biological replicates for each time point.
Project description:Isolation and characterization of bacteriophages specific to Streptococcus equi subspecies zooepidemicus and evaluation of efficacy ex vivo
Project description:Codon optimality mediated decay(COMD) is a conserved phenomenon from yeast to human. Our data suggests that COMD alson exist in neurospora crass. We resort thiolutin(inhibitor for transcription) to treat cells in different time point and transcriptionally profiled them to get the landscape of transpcriptional decay profiling.
Project description:The gut of chicken is mostly colonised with Campylobacter jejuni and with 100 fold less C. coli. The competitive ability of C. coli OR12 over C. jejuni OR1 has been examined in experimental broiler chickens following the observation that C. coli replaced an established C. jejuni intestinal colonisation within commercial chicken flocks reared outdoors (El-Shibiny, A., Connerton, P.L., Connerton, I.F., 2005. Enumeration and diversity of campylobacters and bacteriophages isolated during the rearing cycles of free-range and organic chickens. Applied Environmental Microbiology. 71, 1259-1266).