Project description:We report bulk RNA sequencing, low pass whole genome sequencing, and targeted exome sequencing data of six uterine cancer organoids and show how specific molecular defects in these organoids make them sensitive to cell cycle targeting therapies.
Project description:We report bulk RNA sequencing, low pass whole genome sequencing, and targeted exome sequencing data of six uterine cancer organoids and show how specific molecular defects in these organoids make them sensitive to cell cycle targeting therapies.
Project description:We report bulk RNA sequencing, low pass whole genome sequencing, and targeted exome sequencing data of six uterine cancer organoids and show how specific molecular defects in these organoids make them sensitive to cell cycle targeting therapies.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:We performed single nuclei RNA-sequencing (snRNA-seq) with matched T cell receptor sequencing (TCR-seq), and pool matched low pass whole genome sequencing (WGS) of eight specimens from six patients, encompassing four undifferentiated polymorphic sarcomas (UPS) and four intimal sarcomas (INS), and paired specimens from two patients (one UPS and INS each) treated with immune checkpoint blockade (ICB).