Project description:The aim of this study was to investigate the response of human brain endothelial cells to bacterial (group B streptococcus, GBS) infection. Results: GBS WT strain infection results in a specific gene induction pattern that is different from the pilA mutant, but not other mutants such as pilB and srr-1. Conclusion: These findings suggest that the GBS PilA protein contributes to gene induction in brain endothelium.
Project description:We report the characterization of the major regulator of virulence gene expression (CovR) in Group B Streptococcus. The ChIP-seq experiments define the binding of CovR on the chromosome of the BM110 strain, a representative of the hypervirulent GBS lineage responsible of neonatal meningitis. Regulatory evolution of CovR signaling was investigated by comparing ChIP-seq done in parallel in a second GBS clinical isolate (NEM316) not belonging to the hypervirulent lineage.
Project description:Streptococcus agalactiae (Group B Streptococcus, GBS) can colonize the human vaginal tract leading to both superficial and serious infections in adults and neonates. To study bacterial colonization of the reproductive tract in a mammalian system, we employed a murine vaginal carriage model. Using RNASeq, the transcriptome of GBS growing in vivo during vaginal carriage was determined. Over one-quarter of the genes in GBS were found to be differentially regulated during in vivo colonization as compared to laboratory cultures. A two-component system (TCS) homologous to the staphylococcal virulence regulator SaeRS was identified as being up-regulated in vivo. One of the SaeRS targets, pbsP, a proposed GBS vaccine candidate, was shown to be important for colonization of the vaginal tract. A component of vaginal lavage fluid acted as a signal to turn on pbsP expression via SaeRS. These data demonstrate the ability to quantify RNA expression directly from the murine vaginal tract and identify novel genes involved in vaginal colonization by GBS. They also provide more information about the regulation of an important virulence and colonization factor of GBS, pbsP, by the TCS SaeRS.