Project description:Long non-coding RNAs (lncRNAs) are defined as non-protein-coding transcripts that are at least 200 nucleotides long. They are known to play pivotal roles in regulating gene expression, especially during stress responses in plants. We used a large collection of in-house transcriptome data from various soybean (Glycine max and Glycine soja) tissues treated under different conditions to perform a comprehensive identification of soybean lncRNAs. We also retrieved publicly available soybean transcriptome data that were of sufficient quality and sequencing depth to enrich our analysis. In total, RNA-seq data of 332 samples were used for this analysis. An integrated reference-based, de novo transcript assembly was developed that identified ~69,000 lncRNA gene loci. We showed that lncRNAs are distinct from both protein-coding transcripts and genomic background noise in terms of length, number of exons, transposable element composition, and sequence conservation level across legume species. The tissue-specific and time-specific transcriptional responses of the lncRNA genes under some stress conditions may suggest their biological relevance. The transcription start sites of lncRNA gene loci tend to be close to their nearest protein-coding genes, and they may be transcriptionally related to the protein-coding genes, particularly for antisense and intronic lncRNAs. A previously unreported subset of small peptide-coding transcripts was identified from these lncRNA loci via tandem mass spectrometry, which paved the way for investigating their functional roles. Our results also highlight the current inadequacy of the bioinformatic definition of lncRNA, which excludes those lncRNA gene loci with small open reading frames (ORFs) from being regarded as protein-coding.
Project description:Prokaryotic genomes encode a plethora of small noncoding RNAs (ncRNAs) that fine-tune the expression of specific genes. The vast majority of known bacterial ncRNAs are encoded from within intergenic regions, where their expression is controlled by promoter and terminator elements, similarly to protein-coding genes. In addition, recent studies have shown that functional ncRNAs can also be derived from gene 3' untranslated regions (3'UTRs) via an alternative biogenesis pathway, in which the ncRNA segment is separated from the mRNA via RNase cleavage. Here, we report the detection of a large set of decay-generated noncoding RNAs (decRNAs), many of which are completely embedded within protein-coding mRNA regions rather than in the UTRs. We show that these decRNAs are "carved out" of the mRNA through the action of RNase E and that they are predicted to fold into highly stable RNA structures, similar to those of known ncRNAs. A subset of these decRNAs is predicted to interact with Hfq or ProQ or both, which act as ncRNA chaperones, and some decRNAs display evolutionarily conserved sequences and conserved expression patterns between different species. These results suggest that mRNA protein-coding regions may harbor a large set of potentially functional small RNAs.IMPORTANCE Bacteria and archaea utilize regulatory small noncoding RNAs (ncRNAs) to control the expression of specific genetic programs. These ncRNAs are almost exclusively encoded within intergenic regions and are independently transcribed. Here, we report on a large set ncRNAs that are "carved out" from within the protein-coding regions of Escherichia coli mRNAs by cellular RNases. These protected mRNA fragments fold into energetically stable RNA structures, reminiscent of those of intergenic regulatory ncRNAs. In addition, a subset of these ncRNAs coprecipitate with the major ncRNA chaperones Hfq and ProQ and display evolutionarily conserved sequences and conserved expression patterns between different bacterial species. Our data suggest that protein-coding genes can potentially act as a reservoir of regulatory ncRNAs.
Project description:Human genome encodes a multitude of different non-coding transcripts that have been traditionally separated based on their lengths into long or small non-coding RNAs. The vast majority of both long and short non-coding transcripts are not annotated and their functions, mechanisms of action and biological relevance remain unknown. However, based on the functional understanding of the known classes of long and small non-coding RNAs (sncRNAs) that have been shown to play crucial roles in multiple biological processes, it is generally assumed that many unannotated long and small transcripts participate in important cellular functions as well. Still, direct evidence of functionality is lacking for most non-coding transcripts, especially for sncRNAs that are often dismissed as stable degradation products of longer RNAs. Here, we have developed a high-throughput assay to test functionality of sncRNAs based on overexpressing them in human cells. Surprisingly, we found that a significant fraction (> 40%) unannotated sncRNAs appear to have biological relevance. Furthermore, contrary to the expectation, the potentially functional transcripts are not highly abundant and can be derived from protein-coding mRNAs. These results strongly suggest that the small non-coding transcriptome can harbor multiple functional transcripts that warrant future studies.
Project description:Human genome encodes a multitude of different non-coding transcripts that have been traditionally separated based on their lengths into long or small non-coding RNAs. The vast majority of both long and short non-coding transcripts are not annotated and their functions, mechanisms of action and biological relevance remain unknown. However, based on the functional understanding of the known classes of long and small non-coding RNAs (sncRNAs) that have been shown to play crucial roles in multiple biological processes, it is generally assumed that many unannotated long and small transcripts participate in important cellular functions as well. Still, direct evidence of functionality is lacking for most non-coding transcripts, especially for sncRNAs that are often dismissed as stable degradation products of longer RNAs. Here, we have developed a high-throughput assay to test functionality of sncRNAs based on overexpressing them in human cells. Surprisingly, we found that a significant fraction (> 40%) unannotated sncRNAs appear to have biological relevance. Furthermore, contrary to the expectation, the potentially functional transcripts are not highly abundant and can be derived from protein-coding mRNAs. These results strongly suggest that the small non-coding transcriptome can harbor multiple functional transcripts that warrant future studies.
Project description:Non-coding transcripts make up around 98 % of RNAs in the transcriptome of cells, while only around 2 % are coding for proteins. Long non-coding RNAs (> 200bp) are known to have high regulatory functions in various cellular processes. Here, we aimed to characterize the distinct macrophage phenotypes regarding their expression of long non-coding RNAs, which might be involved in the activation process.
Project description:Interventions: Case series:Nil
Primary outcome(s): intestinal microecological disorders;blood non-coding RNAs and immune status
Study Design: Randomized parallel controlled trial
Project description:<p>Hepatoblastoma (HB) is the most common pediatric liver tumor, affecting mostly children under 3 years of age. This rare tumor represents 1% of all pediatric cancers. Genetic studies have shown that HB is characterized by high frequency mutations of the CTNNB1 gene encoding beta-catenin (around 75%) and relative genomic stability. Here we have analyzed the transcriptional profile of 21 HBs compared to matched non-tumor livers by Cap Analysis of Gene Expression (CAGE), which provides accurate and quantitative profiling of all transcripts. CAGE analysis revealed strong upregulation of known Wnt target coding genes in most tumors analyzed, consistent with previous transcriptomic studies. To better define the Wnt-dependent transcriptional landscape of HB, we integrated CAGE data with TCF4 ChIP-seq data from a CTNNB1-mutated cancer cell line and with the FANTOM5 genomic coordinates of TCF/LEF binding motifs. Both TCF/LEF binding motifs and ChIP-seq peaks were strongly enriched in the immediate upstream region, not only for protein-coding genes, but also for non-coding transcripts. Among the selected 112 top Wnt target genes at FDR<1.0E-6 and fold change>8, we found clear over-representation (66%) of distant transcription start sites (TSSs) representing lncRNAs and enhancer RNAs, which raises the question of their role in HB pathogenesis. Analysis of the 112 promoters using CAGEd-oPOSSUM confirmed the predominant involvement of Tcf/Lef transcription factors, together with HNF4G, GATA2, Sox3 and Ets-related genes. Finally, the 112 Wnt target signature defined 3 tumor subclasses, T1, T2 and T3, characterized by progressive alteration of the non-coding part of the transcriptome and significant differences in clinical behavior.</p>
Project description:Using RNA CaptureSeq we annotated non-coding RNAs transcribed from genome intervals surrounding breast cancer risk signals in a range of mammary-derived tissue and cell lines.
Project description:BACKGROUND: Transcription of large numbers of non-coding RNAs originating from intronic regions of human genes has been recently reported, but mechanisms governing their biosynthesis and biological functions are largely unknown. In this work, we evaluated the existence of a common mechanism of transcription regulation shared by protein-coding mRNAs and intronic RNAs by measuring the effect of androgen on the transcriptional profile of a prostate cancer cell line. RESULTS: Using a custom-built cDNA microarray enriched in intronic transcribed sequences, we found 39 intronic non-coding RNAs for which levels were significantly regulated by androgen exposure. Orientation-specific reverse transcription-PCR indicated that 10 of the 13 were transcribed in the antisense direction. These transcripts are long (0.5-5 kb), unspliced and apparently do not code for proteins. Interestingly, we found that the relative levels of androgen-regulated intronic transcripts could be correlated with the levels of the corresponding protein-coding gene (asGAS6 and asDNAJC3) or with the alternative usage of exons (asKDELR2 and asITGA6) in the corresponding protein-coding transcripts. Binding of the androgen receptor to a putative regulatory region upstream from asMYO5A, an androgen-regulated antisense intronic transcript, was confirmed by chromatin immunoprecipitation. CONCLUSIONS: Altogether, these results indicate that at least a fraction of naturally transcribed intronic non-coding RNAs may be regulated by common physiological signals such as hormones, and further corroborate the notion that the intronic complement of the transcriptome play functional roles in the human gene-expression program. Keywords: Time course study – effect of androgen on gene expression
Project description:The human genome encodes a multitude of different noncoding transcripts that have been tra-ditionally separated on the basis of their lengths into long (>200 nt) or small (<200 nt) noncoding RNAs. The functions, mechanisms of action, and biological relevance of the vast majority of both long and short noncoding transcripts remain unknown. However, according to the functional understanding of the known classes of long and small noncoding RNAs (sncRNAs) that have been shown to play crucial roles in multiple biological processes, it is generally assumed that many unannotated long and small transcripts participate in important cellular functions as well. Nevertheless, direct evidence of functionality is lacking for most noncoding transcripts, especially for sncRNAs that are often dismissed as stable degradation products of longer RNAs. Here, we developed a high-throughput assay to test the functionality of sncRNAs by overexpressing them in human cells. Surprisingly, we found that a significant fraction (>40%) of unannotated sncRNAs appear to have biological relevance. Furthermore, contrary to the expectation, the potentially functional transcripts are not highly abundant and can be derived from protein-coding mRNAs. These results strongly suggest that the small noncoding transcriptome can harbor multiple func-tional transcripts that warrant future studies.