Project description:Transcriptome analysis was performed on the rhizome tissues of Atractylodes macrocephala under different treatments. The four treatments were: sterile water irrigation alone, FS root irrigation, FS and AM201 root irrigation, and FS combined with methyltobuzin (TM) root irrigation. And the differential genes between AM201 and FO groups were identified and compared, which helps to reveal the resistance mechanism of AM201 to Atractylodes macrocephala root rot disease
Project description:Ammonium nutrition was studied at short times (24 hours) in roots from one month-old seedlings of maritime pine. Control seedlings were irrigated with 80 mL of water (C) and the experimental seedlings with 80 mL of 3 mM NH4Cl. Root samples were collected at 24 hours post-irrigation and immediately frozen in liquid N. This experiment was carried out three independent times.
Project description:Improvement of phosphorus (P) uptake by crops is a prerequisite for sustainable agriculture. Rice (Oryza sativa L.) PHOSPHORUS-STARVATION TOLERANCE 1 (OsPSTOL1) increases root growth and total P uptake. Here, a biogeographic survey of rice demonstrates OsPSTOL1 loss in a subset of japonica rice after the temperate-tropical split and frequent absence in paddy varieties of east Asia. OsPSTOL1 absence or loss-of-function alleles prevail in landraces from regions with fertilizer use and controlled irrigation, suggesting it is an adaptive genetic variant in low nutrient rainfed ecosystems. OsPSTOL1 is a truncated member of a family of multi-module kinases associated with microbial interactions. We demonstrate that ectopic expression of OsPSTOL1 in wheat (Triticum aestivum L.) increases shoot and root growth under low P conditions, promotes root plasticity, and hastens induction of the low P response pathway. OsPSTOL1’s influence on adaptive root development in wheat validates its potential for broad utilization in crop improvement.
Project description:Flavonoids are stress-inducible metabolites important for plant-microbe interactions. In contrast to their well-known function in initiating rhizobia nodulation in legumes, it is unclear whether and how flavonoids may contribute to plant stress resistance through affecting non-nodulating bacteria in the root microbiome. Here we show how flavonoids preferentially attracts Aeromonadaceae in Arabidopsis thaliana root microbiome and how flavonoid-dependent recruitment of an Aeromona spp. results in enhanced plant Na_H1 resistance.
Project description:Flavonoids are stress-inducible metabolites important for plant-microbe interactions. In contrast to their well-known function in initiating rhizobia nodulation in legumes, it is unclear whether and how flavonoids may contribute to plant stress resistance through affecting non-nodulating bacteria in the root microbiome. Here we show how flavonoids preferentially attracts Aeromonadaceae in Arabidopsis thaliana root microbiome and how flavonoid-dependent recruitment of an Aeromona spp. results in enhanced plant drought resistance.
Project description:GCMS datasets for the soil depth manuscript
Abstract
Two factors that are well-known to influence soil microbiomes include the depth of the soil as well as the level of moisture. Previous works have demonstrated that climate change will increase the incidence of drought in soils, but it is unknown how fluctuations in moisture availability affect soil microbiome composition and functioning down the depth profile. Here, we investigated soil and wheatgrass rhizosphere microbiomes in a common field setting under four different irrigation regimes and three depths. We demonstrated that there is a significant interactive effect, where fluctuations in soil moisture more strongly influence soil microbiomes at the surface layer than in deeper layers, including for soil community composition, diversity, and for functional profiles. Meanwhile, in rhizosphere communities the influence of irrigation was similar across the different depths, although there were slight discrepancies between the two cultivars of wheatgrass used. The lessened response of deeper soil microbiomes to changes in irrigation may be due to higher incidence of slow-growing, stress-resistant microbes.