Project description:Introduction Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) are increasingly isolated, with USA300-0114 being the predominant clone in the USA. Comparative whole genome sequencing of USA300 isolates collected in 2002, 2003 and 2005 showed a limited number of single nucleotide polymorphisms and regions of difference. This suggests that USA300 has undergone rapid clonal expansion without great genomic diversification. However, whole genome comparison of CA-MRSA has been limited to isolates belonging to USA300. The aim of this study was to compare the genetic repertoire of different CA-MRSA clones with that of HA-MRSA from the USA and Europe through comparative genomic hybridization (CGH) to identify genetic clues that may explain the successful and rapid emergence of CA-MRSA. Materials and Methods Hierarchical clustering based on CGH of 48 MRSA isolates from the community and nosocomial infections from Europe and the USA revealed dispersed clustering of the 19 CA-MRSA isolates. This means that these 19 CA-MRSA isolates do not share a unique genetic make-up. Only the PVL genes were commonly present in all CA-MRSA isolates. However, 10 genes were variably present among 14 USA300 isolates. Most of these genes were present on mobile elements. Conclusion The genetic variation present among the 14 USA300 isolates is remarkable considering the fact that the isolates were recovered within one month and originated from a confined geographic area, suggesting continuous evolution of this clone. Data is also available from <ahref=http://bugs.sgul.ac.uk/E-BUGS-108 target=_blank>BuG@Sbase</a>
Project description:Resistant isolates of methicillin-resistant Staphylococcus aureus (MRSA) often cause infections with high rates of mortality. Antimicrobial peptides are source of molecules for new antimi-crobials development, such as melittin, a fraction of venom from Apis mellifera bee. The aims of this work were to evaluate antibacterial and antibiofilm activity of melittin and its association with oxa-cillin (meltoxa) on MRSA isolates and to investigate mechanisms of action on MRSA by using proteomic analysis.
Project description:To examine the impact of virulence determinants in ST72 CA-MRSA isolates, we carried out RNA-seq analysis to compare the transcriptomes of the deletion mutants with that of the wild-type
Project description:Persistent methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is life-threatening and occurs in up to 30% of MRSA bacteremia cases despite appropriate antimicrobial therapy. Isolates of MRSA that cause antibiotic-persistent MRSA bacteremia (APMB) typically have in vitro antibiotic susceptibilities equivalent to those causing antibiotic-resolving MRSA bacteremia (ARMB). Thus, persistence reflects host-pathogen interactions occurring uniquely in context of antibiotic therapy in vivo. However, host factors and mechanisms involved in APMB remain unclear. We compared DNA methylomes in circulating immune cells from patients experiencing APMB vs. ARMB. Overall, methylation signatures diverged in the distinct patient cohorts. Differentially methylated sites intensified proximate to transcription factor binding sites, primarily in enhancer regions. In APMB patients, significant hypo-methylation was observed in binding sites for CCAAT enhancer binding protein (C/EBP) and signal transducer / activator of transcription 1 (STAT1). In contrast, hypo-methylation in ARMB patients localized to glucocorticoid receptor and histone acetyltransferase p300 binding sites. These distinct methylation signatures were enriched in neutrophils and achieved a mean area under the curve of 0.85 when used to predict APMB using a classification model. These findings differentiate epigenotypes in patients experiencing APMB vs. ARMB, and suggest a risk stratification strategy for antibiotic persistence in patients treated for MRSA bacteremia.
Project description:Livestock-associated methicillin resistant Staphylococcus aureus (LA-MRSA) CC398 isolated from UK animals belong to European lineages
Project description:Previous studies have documented the diversity of genetic background of methicillin-resistant S. aureus (MRSA) strains associated with healthcare (HA-MRSA), community (CA-MRSA) and livestock (LA-MRSA). The accessory and core-variable genome content of those strains remain largely unknown. To compare the composition of accessory and core-variable genome of Belgian MRSA strains according to host, population setting and genetic background, representative strains of HA- (n=21), CA- (n = 13) and ST398 LA-MRSA (n = 18) were characterized by a DNA-microarray (StaphVar Array) composed of oligonucleotide probes targeting ~400 resistance, adhesion and virulence associated genes.ST398 strains displayed very homogenous hybridization profiles (>94% gene content homology) irrespective of their host origin. This “ST398-specific” genomic profile was not distantly demarked from those of certain human-associated lineages but lacked several virulence- and colonization-associated genes harbored by strains of human origin, such as genes encoding proteases, haemolysins or adhesins. No enterotoxin gene was found among ST398 strains. In conclusion, our findings are consistent with a non-human origin of this ST398 lineage but suggest that it might have the potential to adapt further to the human host.
Project description:The epidemic community-acquired methicillin-resistant S. aureus (CA-MRSA) clone USA300 has recently become a leading cause of hospital-associated bloodstream infections (BSI). Leveraging this recent introduction into hospitals and the limited genetic variation across the USA300 strains, we combined microbial comparative genomics with phenotypic analyses to discover adaptive mutations. USA300 isolates from BSI were found to have independently evolved single nucleotide variants in the transcriptional regulator sarZ. sarZ inactivation lead to altered expression of virulence factors, resulting in increased lethality in a murine model of BSI. Thus, USA300 strains can optimize their fitness in hospitals through evolution of higher virulence.