Project description:Microbial keratitis is a major cause of blindness worldwide. An excessive host inflammatory response can occur even after adequate antimicrobial treatment. This results in tissue damage with corneal thinning and even perforation, which may require corneal transplantation. In this study we investigated the pathways involved in the pathophysiology of this disease by comparing the human transcriptome profile of tissue from culture-proven bacterial and fungal keratitis (n=7 and n=8 respectively) with normal non-infected cadaveric corneal tissue (C, n=12) using Illumina HT12 v4 microarrays. The causative organisms were Streptococcus pneumoniae (n=6) and Pseudomonas aeruginosa (n=1) for bacterial keratitis (BK). Fungal keratitis (FK) was caused by Fusarium sp. (n=5), Aspergillus sp. (n=2, A. flavus and terreus) and Lasiodiplodia sp. (n=1). Differential expression (DE) analysis revealed 2310 significantly altered probes in the BK v C comparison, and 1813 probes for FK v C. The most highly upregulated gene in both comparisons was MMP9 with fold changes (FC) of 64 (fdr-adjusted p<6 x10-11) for FK v C and 89 for BK v C (fdr-adjusted p<4 x10-11) respectively. Network co-expression analyses revealed the defense response, inflammatory response and extracellular matrix mechanisms to be the main functional pathways involved. Microarray results were validated by performing real-time quantitative PCR (RTqPCR) for 46 DE genes using RNA extracted from the same samples. There was a high correlation between log2 FC values from microarray and RTqPCR. Further studies are needed to evaluate the most highly differentially expressed genes as possible biomarkers of disease progression or therapeutic targets. Case - control study design. Corneal ulcer tissue from 8 bacterial and 9 fungal ulcers was excised at the time of corneal transplantation surgery and immediately preserved in RNALater. Non-infected corneal tissue from 13 cadaver corneas were the control tissue. Transcriptome profile generated using Illumina HT12 v4 beadchips. Differential expression analysis was performed with pairwise comparisons: bacterial ulcers versus controls, fungal ulcers versus controls and bacterial versus fungal ulcers. Microarray results validated with RTqPCR.
Project description:MicroRNAs (miRNAs) are small, stable non-coding RNA molecules with regulatory function and marked tissue specificity that post-transcriptionally regulate gene expression, however their role in fungal keratitis remain unknown. Our purpose was to identify the miRNAs in human cornea from fungal keratitis patients and understand their key role in regulation of pathogenesis. Corneal samples from normal cadaver (n=3) and fungal keratitis (n=5) patients were pooled separately and total RNA was extracted. Deep sequencing was done using Illumina HiSeq1000 platform to identify miRNA profile. We identified seventy five differentially expressed miRNAs in fungal keratitis corneas. Select miRNAs were validated by real-time RT-PCR (Q-PCR). We predicted their role in regulating target genes in several pathways by combining miRNA target genes and pathway analysis, and mRNA expression of select target genes were further analysed by Q-PCR. MiR-21-5p, miR-223-3p, miR-146b-5p, miR-155-5p, miR-511-5p were found to be involved in inflammatory and immune responses, regulating Toll like receptor signaling pathways, which is of particular interest. MiR-451a with an increased expression in keratitis may have a role in wound healing by targeting Macrophage Migration Inhibitory Factor (MIF). Further, we highlighted that Neurotrophin signaling pathway may play a role in wound healing process. One novel miRNA was also detected in cornea. In conclusion, several miRNAs with high expression in fungal keratitis corneas point towards their role in regulation of pathogenesis. Further insights in understanding miRNAs role in wound healing and inflammation may help design new therapeutic strategies.
2016-07-28 | GSE64843 | GEO
Project description:A case of Culler-Jones syndrome caused by a novel mutation of GLI2 gene and literature review
Project description:MicroRNAs (miRNAs) are small, stable non-coding RNA molecules with regulatory function and marked tissue specificity that post-transcriptionally regulate gene expression, however their role in fungal keratitis remain unknown. Our purpose was to identify the miRNAs in human cornea from fungal keratitis patients and understand their key role in regulation of pathogenesis. Corneal samples from normal cadaver (n=3) and fungal keratitis (n=5) patients were pooled separately and total RNA was extracted. Deep sequencing was done using Illumina HiSeq1000 platform to identify miRNA profile. We identified seventy five differentially expressed miRNAs in fungal keratitis corneas. Select miRNAs were validated by real-time RT-PCR (Q-PCR). We predicted their role in regulating target genes in several pathways by combining miRNA target genes and pathway analysis, and mRNA expression of select target genes were further analysed by Q-PCR. MiR-21-5p, miR-223-3p, miR-146b-5p, miR-155-5p, miR-511-5p were found to be involved in inflammatory and immune responses, regulating Toll like receptor signaling pathways, which is of particular interest. MiR-451a with an increased expression in keratitis may have a role in wound healing by targeting Macrophage Migration Inhibitory Factor (MIF). Further, we highlighted that Neurotrophin signaling pathway may play a role in wound healing process. One novel miRNA was also detected in cornea. In conclusion, several miRNAs with high expression in fungal keratitis corneas point towards their role in regulation of pathogenesis. Further insights in understanding miRNAs role in wound healing and inflammation may help design new therapeutic strategies. Control and fungal keratitis, human corneal miRNA profiles were generated using IlluminaHiseq1000 platform
Project description:Bullous pemphigoid (BP) is a rare, life-threatening autoimmune blistering disease with pruritus and tension blisters/bullous as the main clinical manifestations. Glucocorticosteroids are the main therapeutic agents for it, but their efficacy is poor in some patients. Tofacitinib, a small molecule agent that inhibits JAK1/3, has shown incredible efficacy in a wide range of autoimmune diseases and maybe a new valuable treatment option for refractory BP. To report a case of refractory BP successfully treated with tofacitinib, then explore the underlying mechanism behind the treatment, and finally review similarities to other cases reported in the literature. Case report and literature review of published cases of successful BP treatment with JAK inhibitors. The case report describes a 73-year-old male with refractory BP that was successfully managed with the combination therapy of tofacitinib and low-dose glucocorticoids for 28 weeks. Immunohistochemistry and RNA sequencing were performed to analyze the underlying mechanism of tofacitinib therapy. A systematic literature search was conducted to identify other cases of treatment with JAK inhibitors. Throughout the 28-week treatment period, the patient experienced clinical, autoantibody and histologic resolution. Immunohistochemical analysis showed tofacitinib significantly decreased the pSTAT3 and pSTAT6 levels in the skin lesions of this patient. RNA sequencing and immunohistochemical testing of lesion samples from other BP patients identified activation of the JAK-STAT signaling pathway. Literature review revealed 17 previously reported cases of BP treated with four kinds of JAK inhibitors successfully, including tofacitinib (10), baricitinib (1), upadacitinib (3) and abrocitinib (3). Our findings support the potential of tofacitinib as a safe and effective treatment option for BP. Larger studies are underway to better understand this efficacy and safety.
Project description:PURPOSE Corneal infections are a leading cause of visual impairment and blindness worldwide. Here we applied high-resolution transcriptomic profiling to assess the general and pathogen-specific molecular and cellular mechanisms during human corneal infection. METHODS Clinical diagnoses of herpes simplex virus (HSV) (n=5) and bacterial/fungal (n=5) keratitis were confirmed by histology. Healthy corneas (n=7) and keratoconus (n=4) samples served as controls. Formalin-fixed, paraffin-embedded (FFPE) human corneal specimens were analyzed using the 3' RNA sequencing method Massive Analysis of cDNA Ends (MACE RNA-seq). The cellular host response was investigated using comprehensive bioinformatic deconvolution (xCell) analyses and by integration with single cell RNA-seq data. RESULTS Our analysis identified 216 and 561 genes, that were specifically overexpressed in viral or bacterial/fungal keratitis, respectively, and allowed to distinguish the two etiologies. The virus-specific host response was driven by adaptive immunity and associated molecular signaling pathways, whereas the bacterial/fungal-specific host response mainly involved innate immunity signaling pathways and cell types. We identified several molecular mechanisms involved in the host response to infectious keratitis, including CXCL9, CXCR3, and MMP9 for viral, and S100A8/A9, MMP9, and the IL17 pathway for bacterial/fungal keratitis. CONCLUSIONS High-resolution molecular profiling provides new insights into the human corneal host response to viral and bacterial/fungal infection. Pathogen-specific molecular profiles may provide the foundation for novel diagnostic biomarker and therapeutic approaches that target inflammation-induced damage to corneal host cells with the goal to improve the outcome of infectious keratitis.
Project description:The objective of this study was on the one hand to compare the transcriptional dynamics of mutualistic Colletotrichum tofieldiae and pathogenic Colletotrichum incanum during colonization of Arabidopsis roots and on the other hand also examine the corresponding host responses Arabidopsis seeds that were either untreated (mock) or inoculated with Colletotrichum tofieldiae (isolate 0861) or Colletotrichum incanum (isolate MAFF230704) were grown in normal (P+) or low (P-) phosphate conditions. Roots (with/without fungal colonization) were collected at 6, 10, 16, and 24 days post inoculation (dpi). Additionally, C. tofieldiae and C. incanum in vitro hyphae were collected after two days growth in liquid Mathurâs medium. For each condition three replicates were obtained.