Project description:Dysregulation of microRNAs (miRNAs) plays a critical role in the development of intervertebral disc degeneration (IDD). In this study, we present evidence from in vitro and in vivo research to elucidate the mechanism underlying the role of miR-760 in IDD. miRNA microarray and quantitative reverse transcription-polymerase chain reaction were used to determine the miRNA profiles in patients with IDD. Functional analysis was performed to evaluate the role of miR-760 in the pathogenesis of IDD. Luciferase reporter and western blotting assays were used to confirm the miRNA targets. The expression of miR-760 was significantly decreased in degenerative nucleus pulposus (NP) cells and negatively correlated with disc degeneration grade. Functional assays demonstrated that miR-760 delivery significantly increased NP cell proliferation and promoted the expression of collagen II and aggrecan. Moreover, MyD88 was identified as a target gene of miR-760. miR-760 effectively suppressed MyD88 expression by interacting with the 3′-untranslated region, which was abolished by miR-760 binding site mutations. An in vivo experiment using an IDD mouse model showed that the upregulation of miR-760 could effectively suspend IDD. Therefore, miR-760 was found to play an important role in IDD and can be used as a promising therapeutic target for the treatment of patients with IDD.
Project description:TBR-760 (formerly BIM-23A760) is a chimeric dopamine (DA)-somatostatin (SST) compound with potent agonist activity at both DA type 2 (D2R) and SST type 2 (SSTR2) receptors. Non-functioning pituitary adenomas (NFPAs) express both D2R and SSTR2 and, consequently, may respond to TBR-760. We utilized a mouse model with the pro-opiomelanocortin (POMC) gene knocked-out that spontaneously develops aggressive NFPAs. Both genomic microarray and DA and SST receptor mRNA expression analysis indicate that POMC KO mouse tumors and human NFPAs have similar expression profiles, establishing POMC KO mice as a valid model for study of NFPAs. Treatment with TBR-760 for 8 weeks resulted in nearly complete inhibition of established tumor growth, whereas tumors from vehicle-treated mice increased in size by 890 ± 0.7%. These results support the development of TBR-760 as a therapy for patients with NFPA.
Project description:We used an approach combining PacBio data and published Illumina reads to de novo assemble D. busckii contigs. We generated Hi-C data from D. busckii embryos to order these contigs into chromosome-length scaffolds. For D. virilis we generated Hi-C data to order and orient the published Dvir_caf1 scaffolds into chromosome-length assemblies. Furthermore, we compared Hi-C matrices from these two new assemblies with D. melanogaster with respect to synteny blocks and dosage compensation as a chromosome-wide gene-regulatory mechanism.