Project description:Candida auris clade III isolate B12039 was spread on YPD plate supplemented with 128 µg/ml fluconazole. Randomly 39 adaptors were chosen for further analysis. We did sequencing of them as as well as the parent.
Project description:DAP-seq was used to generate genome-wide DNA:TF interaction maps for fourteen maize ARFs from the evolutionarily conserved class A ‘activator’ and class B ‘repressor’ clades. Among the distinct binding sites that were identified, we observed a high degree of overlap for ARFs of the same class, but found substantial differences in motif sequence, spacing, site preference, and association with auxin induced genes among clade A and clade B ARFs.
Project description:Candida auris clade III isolate B11221 was spread on YPD plate supplemented with 8 µg/ml tunicamycin. Randomly 18 adaptors were chosen for further analysis. We did sequencing of these 18 adaptors as well as the parent.
Project description:Candida auris clade III isolate B12039 was spread on YPD plate supplemented with 8 µg/ml tunicamycin. Randomly 27 adaptors were chosen for further analysis. We did sequencing of these 27 adaptors as well as the parent.
Project description:Given the overwhelming evidence that symbiont genotypes differentially affect host processes such as growth, bleaching susceptibility, and nutrient acquisition, we set out to measure gene expression differences in fragments of Montastraea faveolata harboring two different clades of Symbiodinium. On the reefs near Puerto Morelos, México, colonies of M. faveolata are known to shift algal symbiont clade with depth, often associating with clade A at the top, clade B in the middle, and clade C near the bottom of the colony. By measuring photosynthetic efficiency and gene expression in control and heat-stressed fragments containing either clade B, clade C, or a mix of both, we found that: 1) the algal response to thermal stress is due to both host and algal factors; 2) fragments of M. faveolata express different genes in response to sub-bleaching thermal stress depending on algal genotype; 3) the overall effect of heat stress on coral gene expression is less significant than the effect of housing different zooxanthellae types. Overall, we present convincing evidence that different Symbiodinium clades may be functionally distinct, which in turn, greatly influences host gene expression.