Project description:Here we describe a genome-wide analysis of copy number variations (CNVs) in Chinese domestic cattle by using array comparative genomic hybridization (array CGH) and quantitative PCR (qPCR). We conducted array CGH analysis on 30 male cattle individuals, animals from consisting of 12 breeds of Bos taurus/Bos indicus, 1 Bos grunniens and and two ones of Bubalus bubalis breeds for with beef, and/or dairy or dual purpose. We identified over 470 candidate CNV regions (CNVRs) in Bos B. taurus/B. indicus; 118 candidate CNV regions (CNVRs) in B. grunniens, 139 CNVRs in B. bubalis. Furthermore, based on the Y haplotypes of B. taurus/ B. indicus, Wwe also identified 69, 337, and 251 candidate CNV regions (CNVRs) in the sub-groups of Y1, Y2 and Y3 haplotypes.
Project description:Copy number variations (CNVs) have been demonstrated as crucial substrates for evolution, adaptation and breed formation. Chinese indigenous cattle breeds exhibit a broad geographical distribution and diverse environmental adaptability. Here, we analyzed the population structure and adaptation to high altitude of Chinese indigenous cattle based on genome-wide CNVs derived from the high-density BovineHD SNP array. We successfully detected the genome-wide CNVs of 318 individuals from 24 Chinese indigenous cattle breeds and 37 yaks as outgroups. A total of 5,818 autosomal CNV regions (683 bp - 4,477,860 bp in size), covering ~14.34% of the bovine genome (UMD3.1), were identified, showing abundant CNV resources. Neighbor-joining clustering, principal component analysis (PCA), and population admixture analysis based on these CNVs support that most Chinese cattle breeds are hybrids of Bos taurus taurus (hereinafter to be referred as Bos taurus) and Bos taurus indicus (Bos indicus). The distribution patterns of the CNVs could to some extent be related to the geographical backgrounds of the habitat of the breeds, and admixture among cattle breeds from different districts. We analyzed the selective signatures of CNVs positively involved in high-altitude adaptation using pairwise Fst analysis within breeds with a strong Bos taurus background (taurine-type breeds) and within Bos taurus×Bos indicus hybrids, respectively. CNV-overlapping genes with strong selection signatures (at top 0.5% of Fst value), including LETM1 (Fst = 0.490), TXNRD2 (Fst=0.440) and STUB1 (Fst=0.420) within taurine-type breeds, and NOXA1 (Fst = 0.233), RUVBL1 (Fst=0.222) and SLC4A3 (Fst=0.154) within hybrids, were potentially involved in the adaptation to hypoxia. Thus, we provide a new profile of population structure from the CNV aspects of Chinese indigenous cattle and new insights into high-altitude adaptation in cattle.
Project description:Background: The Malnad Gidda are unique dwarf Bos indicus cattle native to heavy rainfall Malnad and coastal areas of Karnataka in India. These cattle are highly adapted to harsh climatic conditions and are more resistant to Foot and Mouth disease as compared to other breeds of B.indicus. Since the first genome reference became available from B.taurus Hereford breed, only a few other breeds have been genotyped using high-throughput platforms. Also despite the known reports on high diversity within indicine breeds as compared to taurine breeds, only one draft genome of Nellore and horn transcriptome of Kankrej breed were sequenced at base level resolution. Because of the special characteristics Malnad Gidda possess, it becomes the choice of breed among many indicine cows to study at molecular level and genotyping. Results: Sequencing mRNA from the PBMCs isolated from blood of one selected Malnad Gidda bull resulted in generation of 55 million paired-end reads of 100bp length. Raw sequencing data is processed to trim the adaptor and low quality bases, and are aligned against the whole genome and transcript assemblies of Bos taurus UMD 3.1 and Bos indicus (Nellore breed) respectively. About 72% of the sequenced reads from our study could be mapped against the B.taurus genome where as only 41% of reads could be mapped against the Bos indicus transcript assembly. Transcript assembly from the alignment carried out against the annotated B.taurus UMD 3.1 genome resulted in identification of ~10,000 genes with significant expression (FPKM>1). In a similar analysis against the B.indicus Kankrej assembled transcripts we could identify only ~6,000 transcripts. From the variant analysis of the sequencing data we found ~10,000 SNPs in coding regions among which ~9,000 are novel and ~6,400 are amino acid changing. Conclusions: For the first time we have genotyped and explored the transcriptome of B.indicus Malnad Gidda breed. A comparative analysis of mapping the RNA-Seq data against the available reference genome and transcript sequences is demonstrated. An enhanced utility of transcript sequencing could be achieved by improving or completing the sequence assembly of any B.indicus breed to better characterize the indicine breeds for productivity features and selective breeding.
Project description:Comparative microarray analysis of Rhipicephalus (Boophilus) microplus expression profiles of larvae pre-attachment and feeding adult female stages on Bos indicus and B. taurus cattle Global analysis of gene expression changes in R. microplus during larval, pre-attachment and early adult stages of its life cycle feeding on Bos indicus and Bos taurus cattle were compared using gene expression microarray analysis. Among the 13 601 R. microplus transcripts from BmiGI Version 2 we identified 297 up and 17 down regulated transcripts were differentially expressed between R. microplus feeding on tick resistant cattle [Bos indicus (Brahman)] compared to R. microplus feeding on tick susceptible cattle [Bos taurus (Holstein-Friesian)]. These include genes encoding enzymes involved in primary metabolism, and genes related to stress, defence, cell wall modification, cellular signaling, receptor and cuticle. Microarrays were validated by qRT-PCR analysis of selected transcripts including the validation of three housekeeping genes. The analysis of all tick stages under survey suggested a coordinated regulation of defence proteins, proteases, and protease inhibitors to achieve successful attachment and survival of R. microplus on different host breeds particularly Bos indicus cattle.
Project description:Comparative microarray analysis of Rhipicephalus (Boophilus) microplus expression profiles of larvae pre-attachment and feeding adult female stages on Bos indicus and B. taurus cattle Global analysis of gene expression changes in R. microplus during larval, pre-attachment and early adult stages of its life cycle feeding on Bos indicus and Bos taurus cattle were compared using gene expression microarray analysis. Among the 13 601 R. microplus transcripts from BmiGI Version 2 we identified 297 up and 17 down regulated transcripts were differentially expressed between R. microplus feeding on tick resistant cattle [Bos indicus (Brahman)] compared to R. microplus feeding on tick susceptible cattle [Bos taurus (Holstein-Friesian)]. These include genes encoding enzymes involved in primary metabolism, and genes related to stress, defence, cell wall modification, cellular signaling, receptor and cuticle. Microarrays were validated by qRT-PCR analysis of selected transcripts including the validation of three housekeeping genes. The analysis of all tick stages under survey suggested a coordinated regulation of defence proteins, proteases, and protease inhibitors to achieve successful attachment and survival of R. microplus on different host breeds particularly Bos indicus cattle. The microarray was conducted by NimbleGen Systems Inc following the method reported by Saldivar [Saldivar L et al., Insect Mol Biol 2008, 17(6):597-606]. 10 samples: 2 larva, 2 pre-attachment larva in B. indicus and 2 in B. taurus, and 2 adult ticks in B. indicus and 2 in B. taurus
Project description:Genomic structural variation is an important and abundant source of genetic and phenotypic variation. Here we describe the first systematic and genome-wide analysis of copy number variations (CNVs) in modern domesticated cattle using array comparative genomic hybridization (array CGH), quantitative PCR (qPCR) and fluorescent in situ hybridization (FISH). The array CGH panel included 90 animals from 11 Bos taurus, 3 Bos indicus and 3 composite breeds for beef, dairy or dual purpose. We identified over 200 candidate CNV regions (CNVRs) in total and 177 within known chromosomes, which harbor or are adjacent to gains or losses. These 177 high-confidence CNVRs cover 28.1 mega bases or ~1.07% of the genome. Over 50% of the CNVRs (89/177) were found in multiple animals or breeds and analysis revealed breed-specific frequency differences and reflected aspects of the known ancestry of these cattle breeds. Selected CNVs were further validated by independent methods using qPCR and FISH. Approximately 67% of the CNVRs (119/177) completely or partially span cattle genes and 61% of the CNVRs (108/177) directly overlap with segmental duplications. The CNVRs span about 400 annotated cattle genes that are significantly enriched for specific biological functions such as immunity, lactation, reproduction and rumination. Multiple gene families, including ULBP, have gone through ruminant lineage-specific gene amplification. We detected and confirmed marked differences in their CNV frequencies across diverse breeds, indicating that some cattle CNVs are likely to arise independently in breeds and contribute to breed differences. Our results provide a valuable resource beyond microsatellites and single nucleotide polymorphisms to explore the full dimension of genetic variability for future cattle genomic research. The custom aCGH chips that interrogated the whole genome CNVs were build for 90 cattles from diverse breeds, with Hereford L1 Dominette 01449 as refference sample.
Project description:Genomic structural variation is an important and abundant source of genetic and phenotypic variation. Here we describe the first systematic and genome-wide analysis of copy number variations (CNVs) in modern domesticated cattle using array comparative genomic hybridization (array CGH), quantitative PCR (qPCR) and fluorescent in situ hybridization (FISH). The array CGH panel included 90 animals from 11 Bos taurus, 3 Bos indicus and 3 composite breeds for beef, dairy or dual purpose. We identified over 200 candidate CNV regions (CNVRs) in total and 177 within known chromosomes, which harbor or are adjacent to gains or losses. These 177 high-confidence CNVRs cover 28.1 mega bases or ~1.07% of the genome. Over 50% of the CNVRs (89/177) were found in multiple animals or breeds and analysis revealed breed-specific frequency differences and reflected aspects of the known ancestry of these cattle breeds. Selected CNVs were further validated by independent methods using qPCR and FISH. Approximately 67% of the CNVRs (119/177) completely or partially span cattle genes and 61% of the CNVRs (108/177) directly overlap with segmental duplications. The CNVRs span about 400 annotated cattle genes that are significantly enriched for specific biological functions such as immunity, lactation, reproduction and rumination. Multiple gene families, including ULBP, have gone through ruminant lineage-specific gene amplification. We detected and confirmed marked differences in their CNV frequencies across diverse breeds, indicating that some cattle CNVs are likely to arise independently in breeds and contribute to breed differences. Our results provide a valuable resource beyond microsatellites and single nucleotide polymorphisms to explore the full dimension of genetic variability for future cattle genomic research.
Project description:We present the RNA-seq based transcriptome profile of ventral soft palate tissue from two Indian indigenous breeds (Malnad Gidda and Hallikar; Bos indicus) of cattle and Holstein Friesian (HF) crossbred calves. Differentially expressed gene pattern showed stronger innate immune response in the indigenous calves. We find that induction of innate and cell mediated immune response is associated with early viral clearance and mild form of foot-and-mouth disease.