Project description:Human intestinal macrophages contribute to tissue homeostasis in noninflamed mucosa through profound down-regulation of pro-inflammatory cytokine release. Here, we show that this down-regulation extends to Toll-like receptor (TLR)-induced cytokine release, as intestinal macrophages expressed TLR3-TLR9 but did not release cytokines in response to TLR-specific ligands. Likely contributing to this unique functional profile, intestinal macrophages expressed markedly down-regulated adapter proteins MyD88 and Toll interleukin receptor 1 domain-containing adapter-inducing interferon beta, which together mediate all TLR MyD88-dependent and -independent NF-kappaB signaling, did not phosphorylate NF-kappaB p65 or Smad-induced IkappaBalpha, and did not translocate NF-kappaB into the nucleus. Importantly, transforming growth factor-beta released from intestinal extracellular matrix (stroma) induced identical down-regulation in the NF-kappaB signaling and function of blood monocytes, the exclusive source of intestinal macrophages. Our findings implicate stromal transforming growth factor-beta-induced dysregulation of NF-kappaB proteins and Smad signaling in the differentiation of pro-inflammatory blood monocytes into noninflammatory intestinal macrophages. Comparison of unstimulated monocytes and macrophages, and flagellin stimulated monocytes and macrophages.
Project description:Human intestinal macrophages contribute to tissue homeostasis in noninflamed mucosa through profound down-regulation of pro-inflammatory cytokine release. Here, we show that this down-regulation extends to Toll-like receptor (TLR)-induced cytokine release, as intestinal macrophages expressed TLR3-TLR9 but did not release cytokines in response to TLR-specific ligands. Likely contributing to this unique functional profile, intestinal macrophages expressed markedly down-regulated adapter proteins MyD88 and Toll interleukin receptor 1 domain-containing adapter-inducing interferon beta, which together mediate all TLR MyD88-dependent and -independent NF-kappaB signaling, did not phosphorylate NF-kappaB p65 or Smad-induced IkappaBalpha, and did not translocate NF-kappaB into the nucleus. Importantly, transforming growth factor-beta released from intestinal extracellular matrix (stroma) induced identical down-regulation in the NF-kappaB signaling and function of blood monocytes, the exclusive source of intestinal macrophages. Our findings implicate stromal transforming growth factor-beta-induced dysregulation of NF-kappaB proteins and Smad signaling in the differentiation of pro-inflammatory blood monocytes into noninflammatory intestinal macrophages.
Project description:Classical Hodgkin lymphoma (cHL) is one of the most common malignant lymphomas. It is characterized by the presence of rare Hodgkin and Reed/Sternberg (HRS) cells embedded in an extensive inflammatory infiltrate. Constitutive activation of nuclear factor-kappaB (NF-kappaB) in HRS cells which transcriptionally regulates expression of multiple anti-apoptotic factors and pro-inflammatory cytokines plays a central role in the pathogenesis of cHL (1, 2). In non-stimulated condition, NF-kappaB proteins are rendered inactive by binding to their inhibitors (IkappaB s), which sequester them in the cytoplasm. Stimulation of multiple receptors activates the IkappaB kinase (IKK) complex that phosphorylates IkappaB at two specific serine residues, followed by its ubiquitination and proteasomal degradation, thereby releasing NF-kappaB proteins and allowing their nuclear translocation (3). Recently, two studies provided further insights into the molecular mechanisms of IKK activation upon TNF stimulation (4, 5). Activation of the IKK complex and subsequent NF-kappaB activation requires Lys63 polyubiquitination of RIP1, a kinase which is recruited to the receptor upon TNF stimulation. IKK-gamma (NEMO), the regulatory subunit of the IKK complex, specifically recognizes these Lys63-linked polyubiquitins attached to RIP1 and thereby activates IKK and NF-kappaB (4, 5). A20 is an ubiquitin-modifying enzyme that inhibits NF-kappaB activation in succession of tumor necrosis factor (TNF) receptor and Toll-like receptor induced signals (6-8). This enzyme removes Lys63 linked ubiquitin chains from RIP1 and adds Lys48 polyubiquitins to RIP1, thereby targeting this factor for proteasomal degradation, thus explaining the molecular mechanism of NF-kappaB inhibition by A20 (6). A20 likely inhibits NF-kappaB acitivity also by additional means, including interaction with TRAF1 and TRAF2 (9).
Project description:Classical Hodgkin lymphoma (cHL) is one of the most common malignant lymphomas. It is characterized by the presence of rare Hodgkin and Reed/Sternberg (HRS) cells embedded in an extensive inflammatory infiltrate. Constitutive activation of nuclear factor-kappaB (NF-kappaB) in HRS cells which transcriptionally regulates expression of multiple anti-apoptotic factors and pro-inflammatory cytokines plays a central role in the pathogenesis of cHL (1, 2). In non-stimulated condition, NF-kappaB proteins are rendered inactive by binding to their inhibitors (IkappaB s), which sequester them in the cytoplasm. Stimulation of multiple receptors activates the IkappaB kinase (IKK) complex that phosphorylates IkappaB at two specific serine residues, followed by its ubiquitination and proteasomal degradation, thereby releasing NF-kappaB proteins and allowing their nuclear translocation (3). Recently, two studies provided further insights into the molecular mechanisms of IKK activation upon TNF stimulation (4, 5). Activation of the IKK complex and subsequent NF-kappaB activation requires Lys63 polyubiquitination of RIP1, a kinase which is recruited to the receptor upon TNF stimulation. IKK-ï§ï (NEMO), the regulatory subunit of the IKK complex, specifically recognizes these Lys63-linked polyubiquitins attached to RIP1 and thereby activates IKK and NF-kappaB (4, 5). A20 is an ubiquitin-modifying enzyme that inhibits NF-kappaB activation in succession of tumor necrosis factor (TNF) receptor and Toll-like receptor induced signals (6-8). This enzyme removes Lys63 linked ubiquitin chains from RIP1 and adds Lys48 polyubiquitins to RIP1, thereby targeting this factor for proteasomal degradation, thus explaining the molecular mechanism of NF-kappaB inhibition by A20 (6). A20 likely inhibits NF-kappaB acitivity also by additional means, including interaction with TRAF1 and TRAF2 (9). SNP 6.0 array (Affymetrix) analyses were performed according to the manufacturer's directions on DNA extracted from three Hodgkin cell lines (L1236, HDLM-2, U-HO1), HapMap samples included in the Genotyping Console Software 3.0 were used as references.
Project description:Chronic active B cell receptor (BCR) signaling, a hallmark of the ABC subtype of diffuse large B cell lymphoma (DLBCL), engages the CARD11-MALT1-BCL10 (CBM) adapter complex to activates IkappaB kinase (IKK) and the classical NF-kappaB pathway. Here we show that the CBM complex includes the E3 ubiquitin ligases cIAP1 and cIAP2, which are essential mediators of BCR-dependent NF-kappaB activity in ABC DLBCL. cIAP1/2 attach K63-linked polyubiquitin chains on themselves and on BCL10, resulting in the recruitment of IKK and the linear ubiquitin chain ligase LUBAC, which is essential for IKK activation. SMAC mimetic drugs target cIAP1/2 for destruction, and consequently suppress NF-kappaB and selectively kill BCR-dependent ABC DLBCL lines, supporting their clinical evaluation in patients with ABC DLBCL.
Project description:Constitutive Kras and NF-kappaB activation is identified as signature alterations in human pancreatic ductal adenocarcinoma (PDAC). However, the mechanisms of constitutive NF-kappaB activation in KrasG12D-induced PDAC are not yet understood. Here, we report that pancreas-targeted IKK2/beta inactivation inhibited NF-kappaB activation and completely suppressed PDAC development in KrasG12D and KrasG12D;Ink4a/Arf mutant mice, demonstrating a genetic link between IKK2/beta and KrasG12D in PDAC inception. Our findings reveal that KrasG12D-activated AP-1 induces IL-1alpha, which in turn activates NF-kappaB and its target genes IL-1alpha and p62, to initiate IL-1alpha/p62 feedforward loops for inducing and sustaining NF-kappaB activity. Furthermore, IL-1alpha overexpression correlates with Kras mutation, constitutive NF-kappaB activity, and poor survival in PDAC patients. Therefore, our findings establish a pathway linking duel feedforward loops of IL-1alpha/p62 through which IKK2/beta/NF-kappaB is activated by KrasG12D.
Project description:Signal transduction by the NF-kappaB pathway is a key regulator of a host of cellular responses to extracellular and intracellular messages. The NEMO adaptor protein lies at the top of this pathway and serves as a molecular conduit, connecting signals transmitted from upstream sensors to the downstream NF-kappaB transcription factor and subsequent gene activation. The position of NEMO within this pathway makes it an attractive target from which to search for new proteins that link NF-kappaB signaling to additional pathways and upstream effectors. In this work, we have used protein microarrays to identify novel NEMO interactors. A total of 112 protein interactors were identified, with the most statistically significant hit being the canonical NEMO interactor IKKbeta, with IKKalpha also being identified. Of the novel interactors, more than 30% were kinases, while at least 25% were involved in signal transduction. Binding of NEMO to several interactors, including CALB1, CDK2, SAG, SENP2 and SYT1, was confirmed using GST pulldown assays and coimmunoprecipitation, validating the initial screening approach. Overexpression of CALB1, CDK2 and SAG was found to stimulate transcriptional activation by NF-kappaB, while SYT1 overexpression repressed TNFalpha-dependent NF-kappaB transcriptional activation in human embryonic kidney cells. Corresponding with this finding, RNA silencing of CDK2, SAG and SENP2 reduced NF-kappaB transcriptional activation, supporting a positive role for these proteins in the NF-kappaB pathway. The identification of a host of new NEMO interactors opens up new research opportunities to improve understanding of this essential cell signaling pathway.
Project description:Constitutive Kras and NF-kappaB activation is identified as signature alterations in human pancreatic ductal adenocarcinoma (PDAC). However, the mechanisms of constitutive NF-kappaB activation in KrasG12D-induced PDAC are not yet understood. Here, we report that pancreas-targeted IKK2/beta inactivation inhibited NF-kappaB activation and completely suppressed PDAC development in KrasG12D and KrasG12D;Ink4a/Arf mutant mice, demonstrating a genetic link between IKK2/beta and KrasG12D in PDAC inception. Our findings reveal that KrasG12D-activated AP-1 induces IL-1alpha, which in turn activates NF-kappaB and its target genes IL-1alpha and p62, to initiate IL-1alpha/p62 feedforward loops for inducing and sustaining NF-kappaB activity. Furthermore, IL-1alpha overexpression correlates with Kras mutation, constitutive NF-kappaB activity, and poor survival in PDAC patients. Therefore, our findings establish a pathway linking duel feedforward loops of IL-1alpha/p62 through which IKK2/beta/NF-kappaB is activated by KrasG12D. To study Kras-induced inflammatory responses and to identify differentially expressed genes between the pancreatic tissues of Pdx1-Cre;KrasLSL-G12D and Pdx1-Cre;KrasLSL-G12D;IKK2/betaF/F mice, cDNA microarray analysis was performed.