Project description:ChIP-seq study analysing adult Drosophila melanogaster head, glial, neuronal and fat body, as well as embryonic RNA pol II and H2A.v binding by employing the GAL4-UAS system to generate GFP-fusion proteins and ChIP-seq
Project description:Control of RNA transcription is critical for the development and homeostasis of all organisms, and can occur at multiple steps of the transcription cycle, including RNA polymerase II (Pol II) recruitment, initiation, promoter-proximal pausing, and elongation. That Pol II accumulates on many promoters in metazoans implies that steps other than Pol II recruitment are rate-limiting and regulated 1-6. By integrating genome-wide Pol II chromatin immunoprecipition (ChIP) and Global Run-On (GRO) genomic data sets from Drosophila cells, we examined critical features of Pol II near promoters. The accumulation of promoter-proximal polymerase is widespread, occurring on 70% of active genes; and unlike elongating Pol II within the body of genes, promoter Pol II are held paused by factors like NELF, unable to transcribe unless nuclei are treated with strong detergent. Notably, we find that the vast majority of promoter-proximal Pol II detected by ChIP are paused, thereby identifying the biochemical nature of this rate-limiting step in transcription. Finally, we demonstrate that Drosophila promoters do not have the upstream divergent Pol II that is seen so broadly and prominently on mammalian promoters. We postulate this is a consequence of Drosophila’s extensive use of directional core promoter sequence elements, which contrasts with mammals’ lack of directional elements and prevalence of CpG island core promoters. In support of this idea, we show that the fraction of mammalian promoters containing a TATA box core element is dramatically depleted of upstream divergent transcription.
Project description:Control of RNA transcription is critical for the development and homeostasis of all organisms, and can occur at multiple steps of the transcription cycle, including RNA polymerase II (Pol II) recruitment, initiation, promoter-proximal pausing, and elongation. That Pol II accumulates on many promoters in metazoans implies that steps other than Pol II recruitment are rate-limiting and regulated 1-6. By integrating genome-wide Pol II chromatin immunoprecipition (ChIP) and Global Run-On (GRO) genomic data sets from Drosophila cells, we examined critical features of Pol II near promoters. The accumulation of promoter-proximal polymerase is widespread, occurring on 70% of active genes; and unlike elongating Pol II within the body of genes, promoter Pol II are held paused by factors like NELF, unable to transcribe unless nuclei are treated with strong detergent. Notably, we find that the vast majority of promoter-proximal Pol II detected by ChIP are paused, thereby identifying the biochemical nature of this rate-limiting step in transcription. Finally, we demonstrate that Drosophila promoters do not have the upstream divergent Pol II that is seen so broadly and prominently on mammalian promoters. We postulate this is a consequence of Drosophila’s extensive use of directional core promoter sequence elements, which contrasts with mammals’ lack of directional elements and prevalence of CpG island core promoters. In support of this idea, we show that the fraction of mammalian promoters containing a TATA box core element is dramatically depleted of upstream divergent transcription. ChIP-seq data set for Pol II (rpb3) (2 replicates).
Project description:In order to idetify paused promoters in vivo, we performed tissue specific Pol II Chip-seq using mutant embryos for the dorsal gradient. We used two population of cells, either dorsal ectoderm cells (gd7 embryos) or mesodermal cells (Toll10b) embryos. ChIP-seq for Pol II in various Drosophila embryos
Project description:Purpose: To analysis Ova impact on H3K4me2 and pol II patterns in Drosophila ovaries by ChIP-seq Methods: Chromatin Immunoprecipitation to identify H3K4me2 and pol II patterns in Drosophila ovaries Results: Knockdown of Ova increases of H3K4me2 and Pol II in some genomic regions.