Project description:Understanding stem cell regulatory circuits is the next challenge in plant biology, as these cells are essential for tissue growth and organ regeneration in response to stress. In the Arabidopsis primary root apex, stem-cell specific transcription factors BRAVO and WOX5 co-localize in the Quiescent Center (QC) cells, where they commonly repress cell division so that these cells can act as a reservoir to replenish surrounding stem cells, yet their molecular connection remains unknown. Genetic and biochemical analysis indicates that BRAVO and WOX5 form a transcription factor complex that modulates gene expression in the QC cells to preserve overall root growth and architecture. Furthermore, by using mathematical modeling we establish that BRAVO uses the WOX5/BRAVO complex to promote WOX5 activity in the stem cells. Our results unveil the importance of transcriptional regulatory circuits in plant stem cell development.
Project description:4plex_brachy_2016_01 - vasc1-bravo - Are hormone signaling genes misregulated in VASC1. - During a screening of the Brachypodium mutant collection at Versailles, a line was identified with a marked vascular phenotype. The causal locus segregates Mendelian way (a recessive locus). A candidate gene was identified by ILLUMINA sequencing at the Joint Genome Institute (JGI) and by the ShoreMAP technique. The objective is to identify which genes whose expression is deregulated in this mutant explain the observed phenotype.
Project description:Gut microbes elicit specific changes in gene expression in the colon of mice. We colonized germ-free mice with microbial communities from the guts of humans, zebrafish and termites, human skin and tongue, soil and estuarine microbial mats. We used microarrays to detail the differences in global gene expression in colon tissue that are caused by the different microbial communities 28 days after gavage into the germfree animal. Three biological replicates per group, male C57BL/6 mice (12-16 weeks old)
Project description:Gut microbes elicit specific changes in gene expression in the colon of mice. We colonized germ-free mice with microbial communities from the guts of humans, zebrafish and termites, human skin and tongue, soil and estuarine microbial mats. We used microarrays to detail the differences in global gene expression in colon tissue that are caused by the different microbial communities 28 days after gavage into the germfree animal.
Project description:Gut microbiome research is rapidly moving towards the functional characterization of the microbiota by means of shotgun meta-omics. Here, we selected a cohort of healthy subjects from an indigenous and monitored Sardinian population to analyze their gut microbiota using both shotgun metagenomics and shotgun metaproteomics. We found a considerable divergence between genetic potential and functional activity of the human healthy gut microbiota, in spite of a quite comparable taxonomic structure revealed by the two approaches. Investigation of inter-individual variability of taxonomic features revealed Bacteroides and Akkermansia as remarkably conserved and variable in abundance within the population, respectively. Firmicutes-driven butyrogenesis (mainly due to Faecalibacterium spp.) was shown to be the functional activity with the higher expression rate and the lower inter-individual variability in the study cohort, highlighting the key importance of the biosynthesis of this microbial by-product for the gut homeostasis. The taxon-specific contribution to functional activities and metabolic tasks was also examined, giving insights into the peculiar role of several gut microbiota members in carbohydrate metabolism (including polysaccharide degradation, glycan transport, glycolysis and short-chain fatty acid production). In conclusion, our results provide useful indications regarding the main functions actively exerted by the gut microbiota members of a healthy human cohort, and support metaproteomics as a valuable approach to investigate the functional role of the gut microbiota in health and disease.
Project description:Here, we applied a microarray-based metagenomics technology termed GeoChip 5.0 to investigate spring microbial functional genes in mesocosm-simulated shallow lake ecosystems having been undergoing nutrient enrichment and warming for nine years.
Project description:Next generation sequencing has radically changed research in the life sciences, in both academic and corporate laboratories. The potential impact is tremendous, yet a majority of citizens have little or no understanding of the technological and ethical aspects of this widespread adoption. We designed BeerDeCoded as a pretext to discuss the societal issues related to genomic and metagenomic data with fellow citizens, while advancing scientific knowledge of the most popular beverage of all. In the spirit of citizen science, sample collection and DNA extraction were carried out with the participation of non-scientists in the community laboratory of Hackuarium, a not-for-profit organisation that supports unconventional research and promotes the public understanding of science. The dataset presented herein contains the targeted metagenomic profile of 39 bottled beers from 5 countries, based on internal transcribed spacer (ITS) sequencing of fungal species. A preliminary analysis reveals the presence of a large diversity of wild yeast species in commercial brews. With this project, we demonstrate that coupling simple laboratory procedures that can be carried out in a non-professional environment with state-of-the-art sequencing technologies and targeted metagenomic analyses, can lead to the detection and identification of the microbial content in bottled beer.