Project description:Adaptive laboratory evolution is highly effective for improving desired traits through natural selection. However, its applicability is inherently constrained to growth-correlated traits precluding traits of interest that incur a fitness cost, such as metabolite secretion. Here, we introduce the concept of tacking trait enabling natural selection of fitness-costly metabolic traits. The concept is inspired from the tacking maneuver used in sailing for traversing upwind. We use first-principle metabolic models to design an evolution niche wherein the tacking trait and fitness become correlated. Adaptive evolution in this niche, when followed by the reversal to the original niche, manifests in the improvement of the desired trait due to biochemical coupling between the tacking and the desired trait. We experimentally demonstrate this strategy, termed EvolveX, by evolving wine yeasts for increased aroma production. Our results pave the way for precision laboratory evolution for biotechnological and ecological applications.
Project description:Highly enriched methanotrophic communities (> 25 serial transfers) were obtained from acidic ombrotrophic peat bogs from four boreal forest sites. The enrichment strategy involved using media conditions that were associated with the highest rates of methane uptake by the original peat samples, namely, the use of diluted mineral medium of low buffering capacity, moderate incubation temperature (20 degrees C), and pH values of 3 to 6. Enriched communities contained a mixture of rod-shaped bacteria arranged in aggregates with a minor contribution of Hyphomicrobium-like cells. The growth stoichiometry of isolates was characteristic of methanotrophic bacteria (CH4/O2/CO2 = 1:1.1:0.59), with an average apparent yield of 0.41 +/- 0.03 g of biomass C/g of CH4-C. DNA from each enrichment yielded a PCR product of the expected size with primers for both mmoX and mmoY genes of soluble methane monooxygenase. Two types of sequences were obtained for PCR-amplified fragments of mmoX. One of them exhibited high identity to the mmoX protein of the Methylocystis-Methylosinus group, whereas the other showed an equal level of divergence from both the Methylosinus-Methylocystis group and Methylococcus capsulatus (Bath) and formed a distinct branch. The pH optimum for growth and for CH4 uptake was 4.5 to 5.5, which is very similar to that for the optimum CH4 uptake observed in the original peat samples. These methanotrophs are moderate acidophiles rather than acidotolerant organisms, since their growth rate and methane uptake were much lower at neutral pH. The growth of the methanotrophic community was enhanced by using media with a very low salt content (20 to 200 mg/liter), more typical of their natural environment. All four enriched communities grew on N-free medium.
Project description:Organisms modify and choose components of their local environments. This 'niche construction' can alter ecological processes, modify natural selection and contribute to inheritance through ecological legacies. Here, we propose that niche construction initiates and modifies the selection directly affecting the constructor, and on other species, in an orderly, directed and sustained manner. By dependably generating specific environmental states, niche construction co-directs adaptive evolution by imposing a consistent statistical bias on selection. We illustrate how niche construction can generate this evolutionary bias by comparing it with artificial selection. We suggest that it occupies the middle ground between artificial and natural selection. We show how the perspective leads to testable predictions related to: (i) reduced variance in measures of responses to natural selection in the wild; (ii) multiple trait coevolution, including the evolution of sequences of traits and patterns of parallel evolution; and (iii) a positive association between niche construction and biodiversity. More generally, we submit that evolutionary biology would benefit from greater attention to the diverse properties of all sources of selection.
Project description:Understanding microbial niche differentiation along ecological and geochemical gradients is critical for assessing the mechanisms of ecosystem response to hydrologic variation and other aspects of global change. The lineage-specific biogeochemical roles of the widespread phylum Acidobacteria in hydrologically sensitive ecosystems, such as peatlands, are poorly understood. Here, we demonstrate that Acidobacteria sublineages in Sphagnum peat respond differentially to redox fluctuations due to variable oxygen (O2) availability, a typical feature of hydrologic variation. Our genome-centric approach disentangles the mechanisms of niche differentiation between the Acidobacteria genera Holophaga and Terracidiphilus in response to the transient O2 exposure of peat in laboratory incubations. Interlineage functional diversification explains the enrichment of the otherwise rare Holophaga in anoxic peat after transient O2 exposure in comparison to Terracidiphilus dominance in continuously anoxic peat. The observed niche differentiation of the two lineages is linked to differences in their carbon degradation potential. Holophaga appear to be primarily reliant on carbohydrate oligomers and amino acids, produced during the prior period of O2 exposure via the O2-stimulated breakdown of peat carbon, rich in complex aromatics and carbohydrate polymers. In contrast, Terracidiphilus genomes are enriched in diverse respiratory hydrogenases and carbohydrate active enzymes, enabling the degradation of complex plant polysaccharides into monomers and oligomers for fermentation. We also present the first evidence for the potential contribution of Acidobacteria in peat nitrogen fixation. In addition to canonical molybdenum-based diazotrophy, the Acidobacteria genomes harbor vanadium and iron-only alternative nitrogenases. Together, the results better inform the different functional roles of Acidobacteria in peat biogeochemistry under global change. IMPORTANCE Acidobacteria are among the most widespread and abundant members of the soil bacterial community, yet their ecophysiology remains largely underexplored. In acidic peat systems, Acidobacteria are thought to perform key biogeochemical functions, yet the mechanistic links between the phylogenetic and metabolic diversity within this phylum and peat carbon transformations remain unclear. Here, we employ genomic comparisons of Acidobacteria subgroups enriched in laboratory incubations of peat under variable O2 availability to disentangle the lineage-specific functional roles of these microorganisms in peat carbon transformations. Our genome-centric approach reveals that the diversification of Acidobacteria subpopulations across transient O2 exposure is linked to differences in their carbon substrate preferences. We also identify a previously unknown functional potential for biological nitrogen fixation in these organisms. This has important implications for carbon, nitrogen, and trace metal cycling in peat systems.