Project description:Grapevine red blotch is a recently identified viral disease that was first recognized in the Napa Valley of California. Infected plants showed foliar symptoms similar to leafroll, another grapevine viral disease, on vines testing negative for known grapevine leafroll-associated virus. Later, the Grapevine red blotch virus (GRBV) was independently discovered in the US states of California and New York and was demonstrated to be the causal agent of red blotch disease. Due to its wide occurrence in the US, vector transmission and impacts on grape industry, this virus has the potential to cause serious economic losses. Despite numerous attempts, it was not possible to isolate or visualize viral particles from GRBV infected plants. Consequently, this has hampered the development of a serological assay that would facilitate GRBV detection in grapevine. We therefore decided to explore mass spectrometry approaches in order to quantify GRBV in infected plants and to identify potential biomarkers for viral infection. We present for the first time the physical detection on the protein level of the two GRBV genes V1 (coat protein) and V2 in grapevine tissue lysates. The GRBV coat protein load in leaf petioles was determined to be in the range of 100 to 900 million copies per milligram wet weight by using three heavy isotope labeled reference peptides as internal standards. The V1 copy number per unit wet tissue weight in leaves appeared to be about six times lower, and about 200-times lower in terms of protein concentration in the extractable protein mass than in petioles. We found a consistent upregulation of several enzymes involved in flavonoid biosynthesis in leaf and petiole extracts of GRBV-infected plants by label-free shotgun proteomics, indicating the activation of a defense mechanism against GRBV, a plant response already described for grapevine leafroll associated virus infection on the transcriptome level. Last but not least, we identified some other microorganisms belonging to the grapevine leaf microbiota, two bacterial species (Novosphingobium sp. Rr 2-17 and Methylobacterium) and one virus, Grapevine rupestris stem pitting associated virus.
Project description:As virus diseases cannot be controlled by traditional plant protection methods the risk of their spread have to be minimized on vegetatively propagated plants, such as grapevine. Metagenomics approaches used for virus diagnostics, offer a unique opportunity to reveal the presence of all viral pathogens in the investigated plant, why their usage can reduce the risk of using infected material for a new plantation. Here we used a special field, deep sequencing of virus derived small RNAs, of this high throughput method for virus diagnostics and determined viromes of vineyards in Hungary. With NGS of virus derived small RNAs we could detect not only the viruses tested routinely, but also new ones, which have never been described in Hungary before. Virus presence didn’t correlated with the age of the plantation, moreover phylogenetic analysis of the identified virus isolates suggests that infections mostly caused by the usage of infected propagating material. Our results, validated by other molecular methods, highlighted further questions to be answered before these method can be introduced as a routine, reliable test for grapevine virus diagnostics.
Project description:Grapevine red blotch is a recently identified viral disease that was first recognized in the Napa Valley of California. Infected plants showed foliar symptoms similar to leafroll, another grapevine viral disease, on vines testing negative for known grapevine leafroll-associated virus. Later, the Grapevine red blotch virus (GRBV) was independently discovered in the US states of California and New York and was demonstrated to be the causal agent of red blotch disease. Due to its wide occurrence in the US, vector transmission and impacts on grape industry, this virus has the potential to cause serious economic losses. Despite numerous attempts, it was not possible to isolate or visualize viral particles from GRBV infected plants. Consequently, this has hampered the development of a serological assay that would facilitate GRBV detection in grapevine. We therefore decided to explore mass spectrometry approaches in order to quantify GRBV in infected plants and to identify potential biomarkers for viral infection. We present for the first time the physical detection on the protein level of the two GRBV genes V1 (coat protein) and V2 in grapevine tissue lysates. The GRBV coat protein load in leaf petioles was determined to be in the range of 100 to 900 million copies per milligram wet weight by using three heavy isotope labeled reference peptides as internal standards. The V1 copy number per unit wet tissue weight in leaves appeared to be about six times lower, and about 200-times lower in terms of protein concentration in the extractable protein mass than in petioles. We found a consistent upregulation of several enzymes involved in flavonoid biosynthesis in leaf and petiole extracts of GRBV-infected plants by label-free shotgun proteomics, indicating the activation of a defense mechanism against GRBV, a plant response already described for grapevine leafroll associated virus infection on the transcriptome level. Last but not least, we identified some other microorganisms belonging to the grapevine leaf microbiota, two bacterial species (Novosphingobium sp. Rr 2-17 and Methylobacterium) and one virus, Grapevine rupestris stem pitting associated virus.
Project description:Background: Phenotypic plasticity refers to the range of phenotypes a single genotype can express as a function of its environment. These phenotypic variations are attributable to the effect of the environment on the expression and function of genes influencing plastic traits. We investigated phenotypic plasticity in grapevine by comparing the berry transcriptome in a single clone of the vegetatively-propagated common grapevine species Vitis vinifera cultivar Corvina through three consecutive growth years cultivated in 11 different vineyards in the Verona area of Italy. Results: Most of the berry transcriptome clustered by year of growth rather than common environmental conditions or viticulture practices, and transcripts related to secondary metabolism showed high sensitivity towards different climates, as confirmed also by metabolomic data obtained from the same samples. When analyzed in 11 vineyards during one growth year, the environmentally-sensitive berry transcriptome comprised 5% of protein-coding genes and 18% of the transcripts modulated during berry development. Plastic genes were particularly enriched in ontology categories such as transcription factors, translation, transport and secondary metabolism. Specific plastic transcripts were associated with groups of vineyards sharing common viticulture practices or environmental conditions, and plastic transcriptome reprogramming was more intense in the year characterized by extreme weather conditions. We also identified a set of genes that lacked plasticity, showing either constitutive expression or similar modulation in all berries. Conclusions: Our data reveal candidate genes potentially responsible for the phenotypic plasticity of grapevine and provide the first step towards the characterization of grapevine transcriptome plasticity under different agricultural systems. Vitis vinifera cultivar Corvina clone 48 berries were harvested from different vineyards, each located in one of the three most important wine production macro-areas of the Verona region: Bardolino, Valpolicella and Soave, on the basis of the site geographical coordinates. For each of the selected vineyards, specific environmental conditions (altitude and type of soil) and farming and agricultural practices used (training system, rows facing direction, planting layout, vineyard age and rootstock type) were recorded. Vineyards were selected in order to maximize differences in locations and in microenvironmental and farming conditions. Berries were harvested at three different developmental stages: véraison, mid-ripening and harvest; each sample was collected in three biological replicates, to cover the whole vineyard variability. The same sampling procedure had been repeated over three consecutive vintages (2006, 2007 and 2008).
Project description:Purpose and strategy: Grapevine fanleaf virus (GFLV) causes variable symptoms in most vineyards worldwide. To better understand GFLV-grapevine interactions in relation to symptom development, field and greenhouse trials were conducted with a grapevine genotype that exhibits distinct symptoms in response to a severe and a mild strain of GFLV. Results: After validation of the infection status of the experimental vines by high throughput sequencing, the transcriptomic and metabolomic profiles in plants infected with the two viral strains were tested and compared by RNA-Seq and LC-MS, respectively, in the differentiating grapevine genotype. In vines infected with the severe GFLV strain, 1,023 genes, among which some are implicated in the regulation of the hypersensitive-type response, were specifically de-regulated, and a higher accumulation of resveratrol and phytohormones was observed. Interestingly, some experimental vines restricted the virus to the rootstock and remained symptom-less. Our results suggest that GFLV induces a strain- and cultivar-specific defense reaction similar to a hypersensitive reaction. This type of defense leads to a severe stunting phenotype in some grapevines whereas others are resistant. This work is the first evidence of a hypersensitive-like reaction in grapevine during virus infection. Conclusion: Our results suggest that GFLV induces a strain- and cultivar-specific defense reaction similar to a hypersensitive reaction. This type of defense leads to a severe stunting phenotype in some grapevines whereas others are resistant. This work is the first evidence of a hypersensitive-like reaction in grapevine during virus infection.
Project description:Background: Phenotypic plasticity refers to the range of phenotypes a single genotype can express as a function of its environment. These phenotypic variations are attributable to the effect of the environment on the expression and function of genes influencing plastic traits. We investigated phenotypic plasticity in grapevine by comparing the berry transcriptome in a single clone of the vegetatively-propagated common grapevine species Vitis vinifera cultivar Corvina through three consecutive growth years cultivated in 11 different vineyards in the Verona area of Italy. Results: Most of the berry transcriptome clustered by year of growth rather than common environmental conditions or viticulture practices, and transcripts related to secondary metabolism showed high sensitivity towards different climates, as confirmed also by metabolomic data obtained from the same samples. When analyzed in 11 vineyards during one growth year, the environmentally-sensitive berry transcriptome comprised 5% of protein-coding genes and 18% of the transcripts modulated during berry development. Plastic genes were particularly enriched in ontology categories such as transcription factors, translation, transport and secondary metabolism. Specific plastic transcripts were associated with groups of vineyards sharing common viticulture practices or environmental conditions, and plastic transcriptome reprogramming was more intense in the year characterized by extreme weather conditions. We also identified a set of genes that lacked plasticity, showing either constitutive expression or similar modulation in all berries. Conclusions: Our data reveal candidate genes potentially responsible for the phenotypic plasticity of grapevine and provide the first step towards the characterization of grapevine transcriptome plasticity under different agricultural systems.
Project description:Several pathogens infect grapevine, including viruses and viroids. Considering that there are no effective plant protection treatments against these pathogens and vineyards are cultivated through decades usage of high quality and pathogen-free propagation material (rootstocks and scions) is essential. Although presence of regulated pests is routinely checked using ELISA or rarely RT-PCR, these diagnostics methods can detect only particular pathogens moreover can fail to detect variant strains. High-throughput sequencing of small RNAs can be an effective, alternative method to avoid these disadvantages. Since for production of grafts, pathogen free cultivars and rootstocks must be used, 17 grapevine rootstock plantations and 2 rootstock variety collections were selected for characterisation of their virom by high throughput sequencing of virus derived small RNAs.
2020-02-24 | GSE130994 | GEO
Project description:Comparison of two different host plant genera responding to grapevine leafroll-associated virus 3 infection