Project description:Gene content comparison of control C.j. strain 11168 which colonizes and causes disease in a murine model versus strain NW which colonizes but does not elicit disease symptomology in the mouse model. Keywords: DNA/DNA comparison
Project description:Effluent from geoduck clam larval rearing tanks at two different pH (8.2 and 7.1) was collected at 4 time points (Days 1, 5, 8, and 12) over 12 days in a shellfish hatchery in Washington state, USA. The water was filtered to 0.2 microns to retain the bacterial fraction.
Project description:The hepatitis E virus (HEV) affects almost 20 million individuals annually, causing approximately 3.3 million acute liver injuries, 56,600 deaths, and huge healthcare-associated economic losses. Shellfish produced close to urban and livestock areas can bioaccumulate this virus and transmit it to the human population. The aim of this study was to evaluate the presence of HEV in molluscan shellfish, in order to deepen the knowledge about HEV prevalence in Galicia (northwestern Spain), and to investigate this as a possible route of HEV transmission to humans. A total of 168 shellfish samples was obtained from two different Galician rías (Ría de Ares-Betanzos and Ría de Vigo). The samples were analyzed by reverse transcription-quantitative PCR (RT-qPCR). RT-nested PCR and sequencing were used for further genotyping and phylogenetic analysis of positive samples. HEV was detected in 41 (24.4%) samples, at quantification levels ranging from non-quantifiable (<102 copies of the RNA genome (RNAc)/g tissue) to 1.1 × 105 RNAc/g tissue. Phylogenetic analysis based on the open reading frame (ORF)2 region showed that all sequenced isolates belonged to genotype 3, and were closely related to strains of sub-genotype e, which is of swine origin. The obtained results demonstrate a significant prevalence of HEV in bivalve molluscs from Galician rías, reinforcing the hypothesis that shellfish may be a potential route for HEV transmission to humans.
Project description:Comparison of hexachlorocyclohexane (HCH) contaminated soils from Spain with a community-specific microarray. These results are being submitted for publication and represent the first use of microarrays for analysis of soil DNA and the first community-specific microarray design. Keywords: other