Project description:BackgroundNatural gas contains methane and the gaseous alkanes ethane, propane and butane, which collectively influence atmospheric chemistry and cause global warming. Methane-oxidising bacteria, methanotrophs, are crucial in mitigating emissions of methane as they oxidise most of the methane produced in soils and the subsurface before it reaches the atmosphere. Methanotrophs are usually obligate, i.e. grow only on methane and not on longer chain alkanes. Bacteria that grow on the other gaseous alkanes in natural gas such as propane have also been characterised, but they do not grow on methane. Recently, it was shown that the facultative methanotroph Methylocella silvestris grew on ethane and propane, other components of natural gas, in addition to methane. Therefore, we hypothesised that Methylocella may be prevalent at natural gas seeps and might play a major role in consuming all components of this potent greenhouse gas mixture before it is released to the atmosphere.ResultsEnvironments known to be exposed to biogenic methane emissions or thermogenic natural gas seeps were surveyed for methanotrophs. 16S rRNA gene amplicon sequencing revealed that Methylocella were the most abundant methanotrophs in natural gas seep environments. New Methylocella-specific molecular tools targeting mmoX (encoding the soluble methane monooxygenase) by PCR and Illumina amplicon sequencing were designed and used to investigate various sites. Functional gene-based assays confirmed that Methylocella were present in all of the natural gas seep sites tested here. This might be due to its ability to use methane and other short chain alkane components of natural gas. We also observed the abundance of Methylocella in other environments exposed to biogenic methane, suggesting that Methylocella has been overlooked in the past as previous ecological studies of methanotrophs often used pmoA (encoding the alpha subunit of particulate methane monooxygenase) as a marker gene.ConclusionNew biomolecular tools designed in this study have expanded our ability to detect, and our knowledge of the environmental distribution of Methylocella, a unique facultative methanotroph. This study has revealed that Methylocella are particularly abundant at natural gas seeps and may play a significant role in biogeochemical cycling of gaseous hydrocarbons.
Project description:BackgroundNatural gas seeps contribute to global climate change by releasing substantial amounts of the potent greenhouse gas methane and other climate-active gases including ethane and propane to the atmosphere. However, methanotrophs, bacteria capable of utilising methane as the sole source of carbon and energy, play a significant role in reducing the emissions of methane from many environments. Methylocella-like facultative methanotrophs are a unique group of bacteria that grow on other components of natural gas (i.e. ethane and propane) in addition to methane but a little is known about the distribution and activity of Methylocella in the environment. The purposes of this study were to identify bacteria involved in cycling methane emitted from natural gas seeps and, most importantly, to investigate if Methylocella-like facultative methanotrophs were active utilisers of natural gas at seep sites.ResultsThe community structure of active methane-consuming bacteria in samples from natural gas seeps from Andreiasu Everlasting Fire (Romania) and Pipe Creek (NY, USA) was investigated by DNA stable isotope probing (DNA-SIP) using 13C-labelled methane. The 16S rRNA gene sequences retrieved from DNA-SIP experiments revealed that of various active methanotrophs, Methylocella was the only active methanotrophic genus common to both natural gas seep environments. We also isolated novel facultative methanotrophs, Methylocella sp. PC1 and PC4 from Pipe Creek, able to utilise methane, ethane, propane and various non-gaseous multicarbon compounds. Functional and comparative genomics of these new isolates revealed genomic and physiological divergence from already known methanotrophs, in particular, the absence of mxa genes encoding calcium-containing methanol dehydrogenase. Methylocella sp. PC1 and PC4 had only the soluble methane monooxygenase (sMMO) and lanthanide-dependent methanol dehydrogenase (XoxF). These are the first Alphaproteobacteria methanotrophs discovered with this reduced functional redundancy for C-1 metabolism (i.e. sMMO only and XoxF only).ConclusionsHere, we provide evidence, using culture-dependent and culture-independent methods, that Methylocella are abundant and active at terrestrial natural gas seeps, suggesting that they play a significant role in the biogeochemical cycling of these gaseous alkanes. This might also be significant for the design of biotechnological strategies for controlling natural gas emissions, which are increasing globally due to unconventional exploitation of oil and gas.
Project description:Methanotrophs, which help regulate atmospheric levels of methane, are active in diverse natural and man-made environments. This range of habitats and the feast-famine cycles seen by many environmental methanotrophs suggest that methanotrophs dynamically mediate rates of methane oxidation. Global methane budgets require ways to account for this variability in time and space. Functional gene biomarker transcripts are increasingly being studied to inform the dynamics of diverse biogeochemical cycles. Previously, per-cell transcript levels of the methane oxidation biomarker, pmoA, were found to vary quantitatively with respect to methane oxidation rates in model aerobic methanotroph, Methylosinus trichosporium OB3b. In the present study, these trends were explored for two additional aerobic methanotroph pure cultures, Methylocystis parvus OBBP and Methylomicrobium album BG8. At steady-state conditions, per cell pmoA mRNA transcript levels strongly correlated with per cell methane oxidation across the three methanotrophs across many orders of magnitude of activity (R2 = 0.91). Additionally, genome-wide expression data (RNA-seq) were used to explore transcriptomic responses of steady state M. album BG8 cultures to short-term CH4 and O2 limitation. These limitations induced regulation of genes involved in central carbon metabolism (including carbon storage), cell motility, and stress response.