Project description:Under disease stress, activation of defense response in plants often comes with the cost of a reduction in growth and yield, which is referred as the growth-defense trade-off. The microorganisms which can be recruited by plants to mitigate the growth-defense trade-off are of great value in crop breeding. The proteomic, physiological and transcriptional profiling data offer insights into the molecular basis underlying the balancing between defense and growth in endophyte-rice symbiont. The findings provide an example for the endophyte-mediated modulation of growth-defense trade-offs in plants and indicated the promising application of endophytic actinobacterial strains in agriculture to breed “microbe-optimized crops”.
Project description:Inoculation of endophyte-free (E-) Theobroma cacao leaves with Colletotrichum tropicale (E+), the dominant foliar fungal endophyte in healthy T. cacao, induced significant changes in the expression of hundreds of host genes. Further, E+ leaves exhibit enhanced pathogen resistance, increased lignin and cellulose content, reduced maximum rates of photosynthesis (Amax), and enrichment of nitrogen-15 and carbon-13 isotopes that all correspond to the changes in expression of specific functional genes in related pathways. Moreover, a cacao gene highly up-regulated in E+ leaves increases pathogen resistance apart from any direct endophyte effects. Thus, benefits of increased pathogen resistance in E+ plants are partially due to enhanced induction of intrinsic host defense pathways, and potential costs include reduced photosynthetic capacity and endophyte metabolism of host tissues. Similar effects are likely to be properties of most plant-endophyte interactions, suggesting general relevance to the design and interpretation of studies of genetic and phenotypic expression in plants. The objective of this experiment was to identify Theobroma cacao genes that are differentially expressed between leaves inoculated with fungal endophyte Colletotrichum tropicale (E+ leaves) and control un-inoculated leaves (E- leaves) 3 days post endophyte inoculation. The experiment was conducted in a Percival growth chamber (model I35LL, 115 volts, 1/4 Hp, series: 8503122.16, Percival Scientific, Inc., Perry IA) with 12/12 h light/dark photoperiod and temperatures of 30M-BM-:C and 26M-BM-:C respectively. Inoculation was done by aspersion of endophyte spores (2X10^6 spore/ml) to a group of T. cacao seedlings and a second group of seedlings were maintained as control un-inoculated (E- leaves). Then three biological replicates (each one consisting of one leaf from different plants) per treatment E+ and four leaves per treatment E- leaves) were collected and processed for a two color oligo microarray analysis.
Project description:Inoculation of endophyte-free (E-) Theobroma cacao leaves with Colletotrichum tropicale (E+), the dominant foliar fungal endophyte in healthy T. cacao, induced significant changes in the expression of hundreds of host genes. Further, E+ leaves exhibit enhanced pathogen resistance, increased lignin and cellulose content, reduced maximum rates of photosynthesis (Amax), and enrichment of nitrogen-15 and carbon-13 isotopes that all correspond to the changes in expression of specific functional genes in related pathways. Moreover, a cacao gene highly up-regulated in E+ leaves increases pathogen resistance apart from any direct endophyte effects. Thus, benefits of increased pathogen resistance in E+ plants are partially due to enhanced induction of intrinsic host defense pathways, and potential costs include reduced photosynthetic capacity and endophyte metabolism of host tissues. Similar effects are likely to be properties of most plant-endophyte interactions, suggesting general relevance to the design and interpretation of studies of genetic and phenotypic expression in plants.
Project description:Inoculation of endophyte-free (E-) Theobroma cacao leaves with Colletotrichum tropicale (E+), the dominant foliar fungal endophyte in healthy T. cacao, induced significant changes in the expression of hundreds of host genes. Further, E+ leaves exhibit enhanced pathogen resistance, increased lignin and cellulose content, reduced maximum rates of photosynthesis (Amax), and enrichment of nitrogen-15 and carbon-13 isotopes that all correspond to the changes in expression of specific functional genes in related pathways. Moreover, a cacao gene highly up-regulated in E+ leaves increases pathogen resistance apart from any direct endophyte effects. Thus, benefits of increased pathogen resistance in E+ plants are partially due to enhanced induction of intrinsic host defense pathways, and potential costs include reduced photosynthetic capacity and endophyte metabolism of host tissues. Similar effects are likely to be properties of most plant-endophyte interactions, suggesting general relevance to the design and interpretation of studies of genetic and phenotypic expression in plants.
Project description:Inoculation of endophyte-free (E-) Theobroma cacao leaves with Colletotrichum tropicale (E+), the dominant foliar fungal endophyte in healthy T. cacao, induced significant changes in the expression of hundreds of host genes. Further, E+ leaves exhibit enhanced pathogen resistance, increased lignin and cellulose content, reduced maximum rates of photosynthesis (Amax), and enrichment of nitrogen-15 and carbon-13 isotopes that all correspond to the changes in expression of specific functional genes in related pathways. Moreover, a cacao gene highly up-regulated in E+ leaves increases pathogen resistance apart from any direct endophyte effects. Thus, benefits of increased pathogen resistance in E+ plants are partially due to enhanced induction of intrinsic host defense pathways, and potential costs include reduced photosynthetic capacity and endophyte metabolism of host tissues. Similar effects are likely to be properties of most plant-endophyte interactions, suggesting general relevance to the design and interpretation of studies of genetic and phenotypic expression in plants.
Project description:Inoculation of endophyte-free (E-) Theobroma cacao leaves with Colletotrichum tropicale (E+), the dominant foliar fungal endophyte in healthy T. cacao, induced significant changes in the expression of hundreds of host genes. Further, E+ leaves exhibit enhanced pathogen resistance, increased lignin and cellulose content, reduced maximum rates of photosynthesis (Amax), and enrichment of nitrogen-15 and carbon-13 isotopes that all correspond to the changes in expression of specific functional genes in related pathways. Moreover, a cacao gene highly up-regulated in E+ leaves increases pathogen resistance apart from any direct endophyte effects. Thus, benefits of increased pathogen resistance in E+ plants are partially due to enhanced induction of intrinsic host defense pathways, and potential costs include reduced photosynthetic capacity and endophyte metabolism of host tissues. Similar effects are likely to be properties of most plant-endophyte interactions, suggesting general relevance to the design and interpretation of studies of genetic and phenotypic expression in plants. The objective of this experiment was to identify Theobroma cacao genes that are differentially expressed between leaves inoculated with fungal endophyte Colletotrichum tropicale (E+ leaves) and control un-inoculated leaves (E- leaves) 14 days post last endophyte inoculation. The experiment was conducted in a Percival growth chambers (model I35LL, 115 volts, 1/4 Hp, series: 8503122.16, Percival Scientific, Inc., Perry IA) with 12/12 h light/dark photoperiod and temperatures of 30M-BM-:C and 26M-BM-:C respectively. A total of four endophyte spore inoculations (1X10^6 spore/ml) were made by aspersion to a group of T. cacao seedlings and a second group of seedlings were maintained as un-inoculated. Then six biological replicates per treatment (E+ leaves and six E- leaves) each one belonging from a different seedling were collected and processed for a two color oligo microarray analysis. A total of six arrays were processed, each one hybridized to an inoculated and a control un-inoculated sample in a dye swap design.
Project description:Inoculation of endophyte-free (E-) Theobroma cacao leaves with Colletotrichum tropicale (E+), the dominant foliar fungal endophyte in healthy T. cacao, induced significant changes in the expression of hundreds of host genes. Further, E+ leaves exhibit enhanced pathogen resistance, increased lignin and cellulose content, reduced maximum rates of photosynthesis (Amax), and enrichment of nitrogen-15 and carbon-13 isotopes that all correspond to the changes in expression of specific functional genes in related pathways. Moreover, a cacao gene highly up-regulated in E+ leaves increases pathogen resistance apart from any direct endophyte effects. Thus, benefits of increased pathogen resistance in E+ plants are partially due to enhanced induction of intrinsic host defense pathways, and potential costs include reduced photosynthetic capacity and endophyte metabolism of host tissues. Similar effects are likely to be properties of most plant-endophyte interactions, suggesting general relevance to the design and interpretation of studies of genetic and phenotypic expression in plants. This was a time course experiment, which objective was to assess gene expression changes in leaves of Theobroma cacao due to inoculation with endophyte Colletotrichum tropicale, over a period of two weeks. Three un-inoculated T. cacao leaves (E-) were collected at time 0, just prior to inoculation, and four T. cacao leaves inoculated with C. tropicale (E+) were collected at 3, 7, and 14 dpi, each leaf from a different plant. Sampled leaves were of developmental stage C-D (MejM-CM--a et al. 2012). MejM-CM--a, L.C., Guiltinan, M., J. , Shi, Z., Landherr, L., and Maximova, S., N. (2012). Expression of Designed Antimicrobial Peptides in Theobroma cacao L. Trees Reduces Leaf Necrosis Caused by Phytophthora spp, in Small Wonders: Peptides for Disease Control. American Chemical Society), 379-395.
Project description:We developed an experimental model to elevate BUN during diestrus. There were both urea and control treatments (7 mares/treatment), done in a crossover design. Urea treatment consisted of a loading dose of urea (0.03 g/kg of urea) and urea injections over 6 hours (0.03 g/kg/hr). Control mares received the same volume of saline solution. Blood samples were collected to measure BUN. Uterine and vaginal pH were evaluated after the last intravenous infusion, then endometrial biopsies were collected for RNA-sequencing