Project description:Breast cancer was one of the first cancer types where molecular subtyping led to explanation of interpersonal heterogeneity and resulted in improvement of treatment regimen. Several multigene classifiers have been developed and in particular those defining molecular signatures of early breast cancers possess significant prognostic information. Hence since 2014, molecular subtyping of primary breast cancers was implemented as a part of routine diagnostics with direct impact of therapy assignment. In this study, we evaluate direct and potential benefits of molecular subtyping in low-risk breast cancers as well as present the advantages of a robust molecular signature in regard to patient work-up among high-risk breast cancers.
Project description:Compositional changes in the microbiota (dysbiosis) may be a basis for Irritable Bowel Syndrome (IBS) but biomarkers are currently unavailable to direct microbiota-directed therapy. We therefore examined whether changes in fecal β-defensin could be a marker of dysbiosis in a murine model. Experimental dysbiosis was induced using four interventions relevant to IBS: a mix of antimicrobials, westernized diets (high-fat/high-sugar and, high salt diets), or mild restraint stress. Fecal mouse β-defensin-3 and 16S rRNA-based microbiome profiles were assessed at baseline, during and following these interventions. Each intervention, except for mild restraint stress, altered compositional and diversity profiles of the microbiota. Exposure to antimicrobials or a high-fat/high-sugar diet, but not mild restraint stress, resulted in decreased fecal β-defensin-3 compared to baseline. In contrast, exposure to the high salt diet increased β-defensin-3 compared to baseline but this was not accompanied by discernible inflammatory changes in the host.
Project description:Molecular subtyping is expected to enable bladder cancer (BC) precise treatment. However, reliable subtyping strategies for clinical application remains defective and controversial. Given the significance of tumor immune dysfunction and exclusion (TIDE) in tumor immune escape and immunotherapy, we aimed to develop a novel TIDE-based subtyping method to facilitate personalized management. Transcriptome data of BC was used to evaluate the heterogeneity and the status of TIDE patterns. We identified 69 TIDE biomarker genes and classified BC samples into three subtypes using consensus clustering. Subtype I showed the lowest TIDE status and malignancy with the best prognosis and highest sensitivity to immune checkpoint blockade (ICB) treatment, which was enriched of metabolic related signaling pathways. Subtype III represented the highest TIDE status and malignancy with the poorest prognosis and resistance to ICB treatment, resulting from its inhibitory immune microenvironment and T cell terminal exhaustion. Subtype II was in a transitional state with intermediate TIDE level, malignancy, and prognosis. We further confirmed the existence and characteristics of our novel TIDE subtypes using real-world BC samples. This subtyping method was proved to be more efficient than previous known methods in identifying non-responders to immunotherapy. We also propose that combining our TIDE subtypes with known biomarkers can potentially improve the sensitivity and specificity of these biomarkers. Moreover, besides guiding ICB treatment, this classification approach can assist in selecting the frontline or recommended drugs. Finally, we confirmed that the TIDE subtypes are conserved across the pan-tumors. In conclusion, our novel TIDE-based subtyping method can serve as a powerful clinical tool for BC and pan-cancer patients, and potentially guiding personalized therapy decisions for selecting potential beneficiaries and excluding resistant patients of ICB therapy.
Project description:To determine microbiota composition associated with loss of KDM5 in intestine, we carried out 16S rRNA seq analyses of dissected intestine from wildtype and kdm5 mutant. [GSM2628181-GSM2628190]. A total of 78 operational taxonomic units (OTUs) were identified in the sequence data. There were about 15 genera much less abundant in kdm5 mutant compared to wildtype. The kdm5 mutant were sensitive to pathogen. To confirm the microbiota associated with loss of KDM5 in intestine, 16S rRNA of new flies were sequenced and analyzed by Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China) [GSM3243472-GSM3243481]. A total of 107 operational taxonomic units (OTUs) were identified in the sequence data. There were about 20 genera much less abundant in kdm5 mutant compared to wildtype. To confirm the microbiota associated with loss of KDM5 drosophila feeding with Lactobacillus plantarum, 16S rRNA of kdm5 mutant flies were sequenced and analyzed by Novogene Bioinformatics Technology Co., Ltd. (Tianjin, China) [GSM3263522-GSM3263527]. A total of 92 operational taxonomic units (OTUs) were identified in the sequence data. To confirm the microbiota associated with KDM5 knockdown in intestine, 16S rRNA of Myo1A-Gal4TS/+ and Myo1A-Gal4TS/+;+/kdm5RNAi flies were sequenced and analyzed by Biomarker Co. Ltd. (Beijing, China). [GSM3507915-GSM3507924]. A total of 50 operational taxonomic units (OTUs) were identified in the sequence data. There was a significant different based on the genus level between two groups.
Project description:Iron-rich pelagic aggregates (iron snow) were collected directly onto silicate glass filters using an electronic water pump installed below the redoxcline. RNA was extracted and library preparation was done using the NEBNext Ultra II directional RNA library prep kit for Illumina. Data was demultiplied by GATC sequencing company and adaptor was trimmed by Trimgalore. After trimming, data was processed quality control by sickle and mRNA/rRNA sequences were sorted by SortmeRNA. mRNA sequences were blast against NCBI-non redundant protein database and the outputs were meganized in MEGAN to do functional analysis. rRNA sequences were further sorted against bacterial/archeal 16S rRNA, eukaryotic 18S rRNA and 10,000 rRNA sequences of bacterial 16S rRNA, eukaryotic 18S rRNA were subset to do taxonomy analysis.
Project description:Purpose: Molecular subtyping for pancreatic cancer has made substantial progress in recent years, facilitating the optimization of existing therapeutic approaches to improve clinical outcomes in pancreatic cancer. With advances in treatment combinations and choices, it is becoming increasingly important to determine ways to place patients on the best therapies upfront. Although various molecular subtyping systems for pancreatic cancer have been proposed, consensus regarding proposed subtypes, as well as their relative clinical utility, remains largely unknown and presents a natural barrier to wider clinical adoption. Methods: We assess three major subtype classification schemas in the context of results from two clinical trials and by meta-analysis of publicly available expression data to assess statistical criteria of subtype robustness and overall clinical relevance. We then developed a single-sample classifier (SSC) using penalized logistic regression based on the most robust and replicable schema. Results: We demonstrate that a tumor-intrinsic two-subtype schema is most robust, replicable, and clinically relevant. We developed Purity Independent Subtyping of Tumors (PurIST), a SSC with robust and highly replicable performance on a wide range of platforms and sample types. We show that PurIST subtypes have meaningful associations with patient prognosis and have significant implications for treatment response to FOLIFIRNOX. Conclusions: The flexibility and utility of PurIST on low-input samples such as tumor biopsies allows it to be used at the time of diagnosis to facilitate the choice of effective therapies for patients with pancreatic ductal adenocarcinoma and should be considered in the context of future clinical trials.
Project description:Irritable bowel syndrome (IBS) patients often experience meal associated symptoms. Our objective was to determine small intestinal mechanisms of lipid-induced symptoms and rectal hypersensitivity in IBS based on RNA-seq.
Project description:Cardiac amyloidosis is a severe clinical condition leading to restrictive cardiomyopathy and heart failure. With increasing options for specific treatment of different cardiac amyloid diseases, correct amyloid subtyping is essential for clinical outcome. Mass spectrometry-based methods for cardiac amyloid subtyping have become important diagnostic tools but are currently used only in a few reference laboratories. Such methods typically include laser-capture microdissection to ensure the specific analysis of amyloid deposits. While this strategy effectively reduces background signals, it is a labor-intensive and costly procedure hampering the implementation of these methods into a wider group of laboratories. Here we introduce a more direct proteomics-based method for subtyping of cardiac amyloids. Endomyocardial biopsies were retrospectively analyzed from fresh frozen material of 78 patients with cardiac amyloidosis and from 12 biopsies of unused donor heart explants. Cryostat sections were directly digested with trypsin and analyzed with the nano-liquid chromatography (nLC-MS/MS), and the data were evaluated by a proteomic software. With a diagnostic threshold set to 70% for each of the four most common amyloid proteins affecting the heart (LC k, LC l, TTR and SAA), 65 of the cases (87%) could be diagnosed, and of these, 61 cases (94%) were in concordance with the original diagnoses. The specimens were also analyzed for the summed intensities of the amyloid signature proteins (ApoE, ApoA-IV and SAP). The summed intensities were significantly higher (p<0.001) for all assigned amyloid cases, whereas unassigned cases were not significantly different from controls and had lower signals than the assigned cases (p<0.001), suggesting that signature proteins can serve as in situ quality markers of cardiac amyloid deposits. We argue that this efficient workflow can be useful for disseminating proteomics for cardiac amyloid subtyping into accredited clinical laboratories.