Project description:Reforestation is effective in restoring ecosystem functions and enhancing ecosystem services of degraded land. The three most commonly employed reforestation methods of natural reforestation, artificial reforestation with native Masson pine (Pinus massoniana Lamb.), and introduced slash pine (Pinus elliottii Engelm.) plantations were equally successful in biomass yield in southern China. However, it is not known if soil ecosystem functions, such as nitrogen (N) cycling, are also successfully restored. Here, we employed a functional microarray to illustrate soil N cycling. The composition and interactions of N-cycling genes in soils varied significantly with reforestation method. Natural reforestation had more superior organization of N-cycling genes, and higher functional potential (abundance of ammonification, denitrification, assimilatory, and dissimilatory nitrate reduction to ammonium genes) in soils, providing molecular insight into the effects of reforestation.
Project description:Bumblebees (Hymenoptera: Apidae) are important pollinating insects that play pivotal roles in crop production and natural ecosystem services. To achieve a comprehensive profile of accessible chromatin regions and provide clues for all possible regulatory elements in the bumblebee genome, we did ATAC-seq for Bombus terrestris samples derived from its four developmental stages: egg, larva, pupa, and adult, respectively. The sequencing reads of ATAC-seq were mapped to B. terrestris reference genome, and its accessible chromatin regions were identified and characterized using bioinformatic methods. Our study will provide important resources not only for uncovering regulatory elements in the bumblebee genome, but also for expanding our understanding of bumblebee biology.
2020-10-02 | GSE151858 | GEO
Project description:Alpine Limnology and Ecosystem Services under Climate Change Conditions
| PRJNA911210 | ENA
Project description:Our good neighbors: Understanding ecosystem services provided by insectivorous bats in Rwanda
Project description:Herein, we evaluated the changes in biological functions in soils across global biomes through the identification and quantification of proteins. This knowledge is essential to provide one stepforward in soil microbial ecology in order to decipher the cellular and molecular mechanisms employed by soil microbial communities to adapt to their environment and to explain the potential responses of microbial communities, and their microbially-driven ecosystem services, to global change and land use. Our study aims to provide the most comprehensive assessment on the structure and function of the topsoil metaproteome across global biomes, and hence provide direct identification of the most domimant protein-encoded functions in terrestrial ecosystems.
Project description:Soil fungi are key players in biomass recycling. Predation influences fungal communities and modulates ecosystem services provided by fungi. Fungal chemical defense against predation comprises toxic proteins and secondary metabolites. The intent of this experiment was to generate transcriptomic information when a fungus, in this case Fusarium graminearum, was in the presence of a predator (Folsomia candida). We assumed that defense metabolites are synthesized on demand and transcriptome analysis can be used to pinpoint genes of defense pathways. To carry out the experiment, cultures of F. graminearum were subjected to grazing by springtail F. candida. After 48 hours at 15°C in dark, springtails were removed, and RNA was extracted from mycelium. Controls were incubated under the same conditions without animals. Each group consisted of four replicates. Strand-specific cDNA libraries were prepared using Illumina’s TruSeq stranded mRNA kit (75 bp paired-end) and sequenced on Illumina NextSeq 500V2.
Project description:Table grapes cv. Cardinal are highly perishable and their quality deteriorates during postharvest storage at low temperature mainly because of sensitivity to fungal decay and senescence of rachis. The application of a 3-day CO2 treatment with 20 kPa CO2 at 0C reduced total decay and retained fruit quality in early and late-harvested table grapes during postharvest storage. In order to study the transcriptional responsiveness of table grapes to low temperature and high CO2 levels in the first stage of storage and how the maturity stage affect these changes, we have performed a comparative large-scale transcriptional analysis. In the first stage of storage, low temperature led to a significantly intense change in grape skin transcriptome irrespective of fruit maturity, although there were different changes within each stage. In the case of CO2 treated samples, in comparison to fruit at time zero, only slight differences were observed. Functional enrichment analysis revealed that major modifications in the transcriptome profile of early- and late-harvested grapes stored at 0C are linked to biotic and abiotic stress-responsive terms. However, in both cases there is a specific reprogramming of the transcriptome during the first stage of storage at 0C in order to withstand the cold stress. Thus, genes involved in gluconeogenesis, photosynthesis, mRNA translation and lipid transport were up-regulated in the case of early-harvested grapes, and genes related to protein folding stability and intracellular membrane trafficking in late-harvested grapes. The beneficial effect of high CO2 treatment maintaining table grape quality seems to be an active process requiring the induction of several transcription factors and kinases in early-harvested grapes, and the activation of processes associated to the maintenance of energy in late-harvested grapes. Table grapes harvested at two maturity stages (early and late). 3 biological replicates. Early-harvested (MI:12.45) : Time zero, 3 days air 0C, 3 days high CO2 levels 0C. Late-harvested (MI: 41.08): Time zero, 3 days air 0C, 3 days high CO2 levels 0C.