Project description:Comparison of gene expression between the virulent Rickettsia rickettsii R strain and avirulent Rickettsia rickettsii Iowa. Keywords: virulent vs avirulent Virulent Rickettsia rickettsii R strain in triplicate was compared to avirulent Rickettsia rickettsii Iowa in triplicate
Project description:Comparison of gene expression between the virulent Rickettsia rickettsii R strain and avirulent Rickettsia rickettsii Iowa. Keywords: virulent vs avirulent
Project description:Rickettsia spp. can cause mild to severe human disease. These intracellular bacteria are associated with arthropods, nematodes and trematodes, and usually, are efficiently transmitted transovarially to the progeny of the invertebrate host. We recently demonstrated foreign gene acquisition by lateral gene transfer in Rickettsia genomes. The unexpected presence of laterally transferred toxin-antitoxin (TA) genetic elements (including vapBC) in several Rickettsia genomes has not been connected with the pathogenic process or the host-bacteria relationship. We suspect that vapBC are selfish genetic elements that addict eukaryotic hosts to Rickettsia. We identified a statistical link between the transovarial transmission of Rickettsia in invertebrate hosts and the presence of TA operons, specifically vapBC, in the Rickettsia genome. These TA are neighboring to type IV secretion genes. Tunel assays and whole-genome expression of infected cells showed that antibiotic eradication of TA-containing Rickettsia from the host in cell culture initiates a proapoptotic program. Rickettsia VapC toxins inhibit the growth of transformed Escherichia coli and Saccharomyces cerevisiae. Rickettsia toxin presents in vitro RNase activity. Annexin-V staining and time-lapse video showed that intracytoplasmic injections of VapC toxins in cells cause apoptosis. These data demonstrate that host cells may develop a dependence on Rickettsia spp. expressing the vapBC operon. This would constitute a new evolutionary “mafia strategy” of intracellular bacteria based on host addiction.
Project description:The green rice leafhopper Nephotettix cincticeps have two mutualistic symbiotic bacteria (Candidatus Sulcia muelleri and Candidatus Nasuia deltocephalinicola) in its symbiont special organ bacteriome and are also infected to rickettsia. In order to determine immune challenge is induced or not by rickettsia infection in N. cincticeps, we investigated gene expression between rickettsia-infected and rifampicin treated uninfected N. cincticeps colonies.
Project description:Proteomics profiling of the secretome of HUVEC cells infected with Rickettsia; Proteomics pprofiling of the plasma proteome of mice infected with Rickettsia.
Project description:Rickettsia spp. can cause mild to severe human disease. These intracellular bacteria are associated with arthropods, nematodes and trematodes, and usually, are efficiently transmitted transovarially to the progeny of the invertebrate host. We recently demonstrated foreign gene acquisition by lateral gene transfer in Rickettsia genomes. The unexpected presence of laterally transferred toxin-antitoxin (TA) genetic elements (including vapBC) in several Rickettsia genomes has not been connected with the pathogenic process or the host-bacteria relationship. We suspect that vapBC are selfish genetic elements that addict eukaryotic hosts to Rickettsia. We identified a statistical link between the transovarial transmission of Rickettsia in invertebrate hosts and the presence of TA operons, specifically vapBC, in the Rickettsia genome. These TA are neighboring to type IV secretion genes. Tunel assays and whole-genome expression of infected cells showed that antibiotic eradication of TA-containing Rickettsia from the host in cell culture initiates a proapoptotic program. Rickettsia VapC toxins inhibit the growth of transformed Escherichia coli and Saccharomyces cerevisiae. Rickettsia toxin presents in vitro RNase activity. Annexin-V staining and time-lapse video showed that intracytoplasmic injections of VapC toxins in cells cause apoptosis. These data demonstrate that host cells may develop a dependence on Rickettsia spp. expressing the vapBC operon. This would constitute a new evolutionary M-bM-^@M-^\mafia strategyM-bM-^@M-^] of intracellular bacteria based on host addiction. Fresh cells from the human microvascular endothelial cell line (HMEC-1) [26] were infected with R. felis California-2 strain in the presence and absence of antibiotics, at a rate of 5 bacteria per eukaryotic cell. Then, we added or not antibiotics (chloramphenicol 50 M-BM-5g/ml or doxycycline to 40 M-BM-5g/ml) in both experimental (R.felis-infected) and control, mock-infected cells for 6 hours. The cells were harvested and RNA was extracted using the RNeasy Mini Kit (Qiagen). DNA contamination was removed using the Turbo DNA-free Kit (Ambion). RNA were labeled using the Quick Amp Labeling Kit One-color (Agilent) and hybridized onto a Whole Human Genome Microarray, 4x44K (Agilent) as recommended by the manufacturer. Arrays were scanned with DNA Microarray Scanner (Agilent), and data were extracted using Feature Extractor (Agilent).
Project description:Background. Pneumococcus is a major human pathogen and the polysaccharide capsule is considered its main virulence factor. Nevertheless, strains lacking a capsule, named non-typeable pneumococcus (NT), are maintained in nature and frequently colonise the human nasopharynx. Interest in these strains, not targeted by any of the currently available pneumococcal vaccines, has been rising as they seem to play an important role in the evolution of the species. Currently, there is a paucity of data regarding this group of pneumococci. Also, questions have been raised on whether they are true pneumococci. We aimed to obtain insights in the genetic content of NT and the mechanisms leading to non-typeability and to genetic diversity. Methods. A collection of 52 NT isolates representative of the lineages circulating in Portugal between 1997 and 2007, as determined by pulsed-field gel electrophoresis and multilocus sequence typing, was analysed. The capsular region was sequenced and comparative genomic hybridisation (CGH) using a microarray covering the genome of 10 pneumococcal strains was carried out. The presence of mobile elements was investigated as source of intraclonal variation. Results. NT circulating in Portugal were found to have similar capsular regions, of cps type NCC2, i.e., having aliB-like ORF1 and aliB-like ORF2 genes. The core genome of NT was essentially similar to that of encapsulated strains. Also, competence genes and most virulence genes were present. The few virulence genes absent in all NT were the capsular genes, type-I and type-II pili, choline-binding protein A (cbpA/pspC), and pneumococcal surface protein A (pspA). Intraclonal variation could not be entirely explained by the presence of prophages and other mobile elements. Conclusions. NT circulating in Portugal are a homogeneous group belonging to cps type NCC2. Our observations support the theory that they are bona-fide pneumococcal isolates that do not express the capsule but are otherwise essentially similar to encapsulated pneumococci. Thus we propose that NT should be routinely identified and reported in surveillance studies.