Project description:Salmonella being one of the major infectious diseases in poultry causes considerable economical losses in terms of mortality and morbidity especially in countries which lack effective vaccination programs. Salmonellosis is considered to be most important zoonotic disease which causes considerable foodborne illness that leads to enormous economic loses. To minimize such losses, enhancing disease resistance to different pathogens seems to be a promising strategy. The indigenous chicken, evolved through thousands of years of natural selection, are well adapted to the local climatic conditions with better resistance to diseases. In the present study we investigated liver and spleen transcriptome profile of indigenous (Kashmir faverolla) breed and commercial broiler poultry at day 5 post-inoculation with Salmonella typhimurium using RNA sequencing. The DEGs and pathways identified shall provide potential targets to enhance disease resistance in poultry through successful breeding programmes.
Project description:The purpose of this study was to investigate the effects of high levels of Tenebrio molitor dietary inclusion (15%) on molecular mechanisms that influence poultry health in a broiler chicken diet.
Project description:Phage therapy is a promising adjunct therapeutic approach against bacterial multidrug-resistant infections, including Pseudomonas aeruginosa-derived infections. Nevertheless, the current knowledge about the phage-bacteria interaction within a human environment is limited. In this work, we performed a transcriptome analysis of phage-infected P. aeruginosa adhered to a human epithelium (Nuli-1 ATCC® CRL-4011™). To this end, we performed RNA-sequencing from a complex mixture comprising phage–bacteria–human cells at early, middle, and late infection and compared it to uninfected adhered bacteria. Overall, we demonstrated that phage genome transcription is unaltered by bacterial growth and phage employs a core strategy of predation through upregulation of prophage-associated genes, a shutdown of bacterial surface receptors, and motility inhibition. In addition, specific responses were captured under lung-simulating conditions, with the expression of genes related to spermidine syntheses, sulfate acquisition, spermidine syntheses, biofilm formation (both alginate and polysaccharide syntheses), lipopolysaccharide (LPS) modification, pyochelin expression, and downregulation of virulence regulators. These responses should be carefully studied in detail to better discern phage-induced changes from bacterial responses against phage. Our results establish the relevance of using complex settings that mimics in vivo conditions to study phage-bacteria interplay, being obvious the phage versatility on bacterial cell invasion.