Project description:To investigate the potential of genetic variants in epigenetic modifiers as biomarkers at diagnosis of chronic myeloid leukaemia (CML), we used Ion Torrent next-generation sequencing of 71 candidate genes for predicting response to tyrosine kinase-inhibitors and probability of disease progression. 124 subjects with newly-diagnosed chronic-phase CML began with imatinib (n=62) or second-generation tyrosine kinase-inhibitors (n=62) and were classified as responders or non-responders based on the BCRABL1 transcript levels within the first year and the European LeukemiaNet criteria for failure. Somatic variants affecting 21 genes (e.g. ASXL1, IKZF1, DNMT3A, CREBBP) were detected in 30% of subjects, most of whom were non-responders (41% non-responders, 18% responders to imatinib, 38% non-responders, 25% responders to second-generation tyrosine kinase-inhibitors). The presence of variants predicted the rate of achieving a major molecular response, event-free survival, progression-free survival and chronic-myeloid-leukaemia-related survival in the imatinib but not the second-generation tyrosine kinase-inhibitors cohort. Rare germline variants had no prognostic significance irrespective of treatment while some pre-leukaemia variants suggest a multi-step development of chronic myeloid leukaemia. Our data suggest that identification of somatic variants at diagnosis facilitates stratification into imatinib responders/non responders, thereby allowing earlier use of second-generation tyrosine kinase-inhibitors, which, in turn, may overcome the negative impact of such variants on disease progression.
Project description:Chronic myelogenous leukemia (CML) is a malignant stem cell disease characterized by a reciprocal translocation between chromosome 9 and 22. The selective bcr-abl tyrosine-kinase inhibitor Imatinib has become the therapy of choice for patients with newly diagnosed CML including those previously considered candidates for allogeneic haematopoietic stem cell transplantation. The tyrosine-kinase inhibitor Nilotinib is a derivate of Imatinib with higher potency. To examine the molecular and functional effects of Nilotinib and Imatinib in chronic myelogenous leukemia, we performed gene expression and functional analyses in K562 cells following treatment with the two tyrosine kinase inhibitors.
Project description:Acquired imatinib resistance in chronic myelogenous leukemia (CML) can be the consequence of mutations in the kinase domain of BCR-ABL or increased protein levels. However, as in other malignancies, acquired resistance to cytostatic drugs is a common reason for treatment failure or disease progression. As a model for drug resistance, we developed a CML cell line resistant to cyclophosphamide (CP). Using oligonucleotide arrays, we examined changes in global gene expression. Selected genes were also examined by real-time PCR and flow cytometry. Neither the parent nor the resistant lines had mutations in their ATP binding domain. Filtering genes with a low-base line expression, a total of 239 genes showed significant changes (162 up- and 77 down-regulated) in the resistant clone. Most of the up-regulated genes were associated with metabolism, signal transduction, or encoded enzymes. The gene for aldehyde dehydrogenase 1 was over-expressed more than 2000 fold in the resistant clone. BCR-ABL was expressed in both cell lines to a comparable extent. When exposed to the tyrosine kinase inhibitors imatinib and nilotinib, both lines were sensitive. In conclusion, we found multiple genetic changes in a CML cell line resistant to CP related to metabolism, signal transduction or apoptosis. Despite these changes, the resistant cells retained sensitivity to tyrosine kinase inhibitors. Experiment Overall Design: A CML cell line and a CP resistant subline were compared by gene array. In addition other markers, the expression of BCR-ABL and the sensitivity to tyrosine kinase inhibitors were tested.
Project description:Chronic myelogenous leukemia (CML) is a malignant stem cell disease characterized by a reciprocal translocation between chromosome 9 and 22. The selective bcr-abl tyrosine-kinase inhibitor Imatinib has become the therapy of choice for patients with newly diagnosed CML including those previously considered candidates for allogeneic haematopoietic stem cell transplantation. The tyrosine-kinase inhibitor Nilotinib is a derivate of Imatinib with higher potency. To examine the molecular and functional effects of Nilotinib and Imatinib in chronic myelogenous leukemia, we performed gene expression and functional analyses in K562 cells following treatment with the two tyrosine kinase inhibitors. Experiment Overall Design: Affymetrix U133A 2.0 microarrays were used to examine the gene expression profile of K562 cells after in vitro treatment with Imatinib (0.5 µM) or Nilotinib (0.05 µM) for 24 hours. Gene expression data of the treated cells were compared with data of untreated cells.
Project description:The Philadelphia chromosome (Ph) encodes the oncogenic BCR-ABL1 tyrosine kinase, which defines a subset of acute lymphoblastic leukemia (ALL) with a particularly unfavorable prognosis. Tyrosine kinase inhibitors (TKI) are widely used to treat patients with leukemia driven by BCR-ABL1 and other oncogenic tyrosine kinases. In response to TKI-treatment, BCR-ABL1 ALL cells upregulate BCL6 protein levels by ~90-fold, i.e. to similar levels as in diffuse large B cell lymphoma (DLBCL) with BCL6 translocations. In this study, we analyzed the gene expression changes after treatment with Imatinib or Imatinib + RI-BPI. Three Ph+ ALL cell lines (BV-173, SUP-B15 and TOM-1) were treated in the presence or absence of 10 μM STI571 (Imatinib) or in the presence of both 10 μM STI571 and 20 μM RI-BPI for 24 hours.
Project description:The Philadelphia chromosome (Ph) encodes the oncogenic BCR-ABL1 tyrosine kinase, which defines a subset of acute lymphoblastic leukemia (ALL) with a particularly unfavorable prognosis. Tyrosine kinase inhibitors (TKI) are widely used to treat patients with leukemia driven by BCR-ABL1 and other oncogenic tyrosine kinases. In response to TKI-treatment, BCR-ABL1 ALL cells upregulate BCL6 protein levels by ~90-fold, i.e. to similar levels as in diffuse large B cell lymphoma (DLBCL) with BCL6 translocations. In this study, we analyzed the gene expression changes after treatment with Imatinib or Imatinib + RI-BPI.
Project description:Treatment with demethylating agents in combination with tyrosine kinase inhibitors have shown improved molecular responses and survival benefits in patients with TKI-resistant or advanced-phase CML. However, little is known regarding underlying mechanism of the combination anti-tumor effect of demethylating agents and tyrosine kinase inhibitors. To analyze the combination effect, we have compared gene expression profiles among chronic myeloid leukemia (CML) cell lines (K562, KBM5) treated with imatinib (IM), a new demethylating agent, OR-2100 (OR21), and these combination therapy.
Project description:Tyrosine kinase activity is the crucial enzymatic activity driving all known functions of the BCR-ABL protein and is required for protection from apoptosis by BCR-ABL, therefore, targeting this enzyme is an effective approach for therapeutic strategies. Recently, a novel structural entity, imatinib (STI571; Novartis, Basel, Switzerland), a potent and selective inhibitor of the tyrosine kinase activity of BCR-ABL, has shown promise against Ph-positive leukemia in human clinical trials. However, the emergence of imatinib resistance in patients with acute forms of Ph-positive leukemia has highlighted the need for overriding chemotherapy to eradicate this disease. AMN107 and BMS-354825 are clinically active “next-generation” BCR-ABL inhibitors. One potentially powerful approach is to use these compounds in combination with imatinib. The rationale for such approaches is that an inhibitor cocktail may target the widest range of resistant clones and thereby delay the onset of acquired drug resistance. More potent BCR-ABL inhibitors would be to target residual leukemia that persists in patients in whom imatinib induces durable remission but failed to eradicate the disease. From these points, our studies are performed to determine (1) the differences of molecular signaling pathways between BMS-354825 and imatinib (2) the mechanisms by which drug resistance of BMS-354825 and imatinib occur except for point mutation of BCR-ABL kinase domain. Keywords: drug sensitivity
Project description:The Philadelphia chromosome (Ph) encodes the oncogenic BCR-ABL1 tyrosine kinase, which is present in almost every patient with chronic myeloid leukemia. In this study, the tyrosine kinase inhibitor Imatinib was used for pharmacological inhibition of BCR-ABL1. Gene expression profiles of CML cell lines were analyzed in response to Imatinib treatment.
Project description:The Philadelphia chromosome (Ph) encodes the oncogenic BCR-ABL1 tyrosine kinase, which defines a subset of acute lymphoblastic leukemia (ALL) with a particularly unfavorable prognosis. Tyrosine kinase inhibitors (TKI) are widely used to treat patients with leukemia driven by BCR-ABL1 and other oncogenic tyrosine kinases. In response to TKI-treatment, BCR-ABL1 ALL cells upregulate BCL6 protein levels by ~90-fold, i.e. to similar levels as in diffuse large B cell lymphoma (DLBCL) with BCL6 translocations. In this study, we used genome tiling arrays to identify BCL6 target genes with specific recruitment of BCL6. Three Ph+ ALL cell lines (BV-173, NALM-1 and TOM-1) in duplicate were either treated with 10µM STI571 (Imatinib) for 24 hours or cultured in absence of STI571.