Project description:Mosquito-borne helminth infections are responsible for a significant worldwide disease burden in both humans and animals. Accordingly, development of novel strategies to reduce disease transmission by targeting these pathogens in the vector are of paramount importance. We found that a strain of Aedes aegypti that is refractory to infection by Dirofilaria immitis, the agent of canine heartworm disease, mounts a stronger immune response during infection than does a susceptible strain. Moreover, activation of the Toll immune signaling pathway in the susceptible strain arrests larval development of the parasite, thereby decreasing the number of transmissionstage larvae. Notably, this strategy also blocks transmission stage Brugia malayi, an agent of human lymphatic filariasis. Our data show that mosquito immunity can play a pivotal role in restricting filarial nematode development and suggest that genetically engineering mosquitoes with enhanced immunity will help reduce disease transmission.
Project description:Solanum torvum Sw is worldwide employed as rootstock for eggplant cultivation because of its vigour and resistance/tolerance to the most serious soil-borne diseasesas bacterial, fungal wilts and root-knot nematodes. A 30,0000 features custom combimatrix chip was designed and microarray hybridizations were conducted for both control and 14 dpi (day post inoculation) with Meloidogyne incognita-infected roots samples. We also tested the chip with samples from the phylogenetically-related nematode-susceptible eggplant species Solanum melongena.The genes identified from S. torvum catalogue, bearing high homology to knownnematode resistance genes, were further investigated in view of their potential role in the nematode resistance mechanism. total RNA was extracted from control and 14 days post-infection (infection with root-knot nematode Meloidogyne incognita) from roots of Solanum torvum and Solanum melongena. Three biological replicates were used for each condition and genotype for a total of 12 samples.
Project description:Solanum torvum Sw is worldwide employed as rootstock for eggplant cultivation because of its vigour and resistance/tolerance to the most serious soil-borne diseasesas bacterial, fungal wilts and root-knot nematodes. A 30,0000 features custom combimatrix chip was designed and microarray hybridizations were conducted for both control and 14 dpi (day post inoculation) with Meloidogyne incognita-infected roots samples. We also tested the chip with samples from the phylogenetically-related nematode-susceptible eggplant species Solanum melongena.The genes identified from S. torvum catalogue, bearing high homology to knownnematode resistance genes, were further investigated in view of their potential role in the nematode resistance mechanism.
Project description:Mammary gland from F1 CO female offspring exhibited enhanced development when transplanted into OID females [OID(CO-MG)], as shown by higher mammary gland area, epithelial branching and epithelial elongation, compared to CO females that received a CO mammary gland [CO(CO-MG)]. Similarly, mammary tumors from F1 CO female offspring transplanted into OID females [OID(CO.T)] displayed improved growth with higher proliferation index and lower apoptotic rates. We also found that granddaughters (F2) from the OID grand-paternal germline showed accelerated tumor growth compared to COxCO granddaughters (F2). Transmission of breast cancer predisposition to the F2 generation through OID male germline was associated with alterations in sperm tRNA fragments (tRF) in both F0 and F1 males.
Project description:Background Heterodera schachtii is an economically important plant parasitic nematode that forms a syncytium from a cell superficial to the formed vascular bundle by progressive recruitment of other cells into the structure. The pattern of plant gene expression changes dramatically inside the syncytium. The pathogen probably plays a major role in defining the plant response by choice of initial plant cell during precise behaviour in planta and/or by the secretions it releases. The modified plant cells enable a high feeding rate by the female nematode so enhancing its rate of development and subsequent daily egg production. Arabidopsis is widely used as a model plant to characterise molecular responses to nematodes (e.g. Sijmons et al., 1991 Plant J. 1:245-254.). A complete overview of the changes in plant gene expression when sedentary nematodes establish has not yet been gained using Arabidopsis or any other host plant. Experimental Approaches Our initial studies will focus on the H. schachtii/Arabidopsis interaction. To assure reliable microarray screening care has been taken to minimise extraneous differences between samples (see "Growth conditions" section). At 21 days (Growth stage 3.2-3.5 Boyes et al., 2001 Plant Cell 13:1499-1510) Arabidopsis plants were challenged with rigorously sterilised, infective nematodes of H. schachtii as before (Urwin et al., (1997) Plant Journal 12: 455-461.). 35 sterile J2s were pipetted onto small ~0.5mm2 squares of sterile GF/A filter paper. The GF/A paper was left in direct contact with the zone of elongation on 3 lateral roots per plant for 48 hours. Control plants were mock inoculated with sterile water. Sections of root containing syncytia have been excised from the thin and transparent roots of Arabidopsis and collected into RNAlater solution (Ambion) at 21 days post infection (Growth Stage 6.1 Boyes et al. 2001). The female nematode has been removed with watch-maker's forceps. Equivalent sections of root have been harvested from non-infected plants. Material has been collected from c. 1000 plants for each of the two samples and the uninfected material serves as an internal control. Total RNA has been prepared from the reference and test root material using an RNeasy plant RNA preparation kit (Qiagen) according to methods required by GARNET.Some questions on the form are omitted as we are not using mutant or transgenic lines. This is our first application. Experimenter name = Peter Edward Urwin Experimenter phone = 0113 343 3035/2909 Experimenter fax = 0113 343 3144 Experimenter address = Centre for Plant Science Experimenter address = University of Leeds Experimenter address = Leeds Experimenter zip/postal_code = LS2 9JT Experimenter country = UK Keywords: pathogenicity_design
Project description:Background; Heterodera schachtii is an economically important plant parasitic nematode that forms a syncytium from a cell superficial to the formed vascular bundle by progressive recruitment of other cells into the structure. The pattern of plant gene expression changes dramatically inside the syncytium. The pathogen probably plays a major role in defining the plant response by choice of initial plant cell during precise behaviour in planta and/or by the secretions it releases. The modified plant cells enable a high feeding rate by the female nematode so enhancing its rate of development and subsequent daily egg production. Arabidopsis is widely used as a model plant to characterise molecular responses to nematodes (e.g. Sijmons et al., 1991 Plant J. 1:245-254.). A complete overview of the changes in plant gene expression when sedentary nematodes establish has not yet been gained using Arabidopsis or any other host plant. Experimental Approaches; Our initial studies will focus on the H. schachtii/Arabidopsis interaction. To assure reliable microarray screening care has been taken to minimise extraneous differences between samples (see "Growth conditions" section). At 21 days (Growth stage 3.2-3.5 Boyes et al., 2001 Plant Cell 13:1499-1510) Arabidopsis plants were challenged with rigorously sterilised, infective nematodes of H. schachtii as before (Urwin et al., (1997) Plant Journal 12: 455-461.). 35 sterile J2s were pipetted onto small ~0.5mm2 squares of sterile GF/A filter paper. The GF/A paper was left in direct contact with the zone of elongation on 3 lateral roots per plant for 48 hours. Control plants were mock inoculated with sterile water. Sections of root containing syncytia have been excised from the thin and transparent roots of Arabidopsis and collected into RNAlater solution (Ambion) at 21 days post infection (Growth Stage 6.1 Boyes et al. 2001). The female nematode has been removed with watch-maker's forceps. Equivalent sections of root have been harvested from non-infected plants. Material has been collected from c. 1000 plants for each of the two samples and the uninfected material serves as an internal control. Total RNA has been prepared from the reference and test root material using an RNeasy plant RNA preparation kit (Qiagen) according to methods required by GARNET.Some questions on the form are omitted as we are not using mutant or transgenic lines. This is our first application. Experimenter name = Peter Edward Urwin; Experimenter phone = 0113 343 3035/2909; Experimenter fax = 0113 343 3144; Experimenter address = Centre for Plant Science; Experimenter address = University of Leeds; Experimenter address = Leeds; Experimenter zip/postal_code = LS2 9JT; Experimenter country = UK Experiment Overall Design: 2 samples were used in this experiment
Project description:To investigate the potential vertical transmission of chronic stress to the unexposed larvae, to report novel consequences of paternally inherited chronic stress at molecular level