Project description:MicroRNAs (miRNAs) are non-coding, short, single-stranded RNAs with essential roles in gene regulation in various organisms including higher plants. In contrast to the vast information on miRNAs from many economically important plants, almost nothing has been reported on the identification or analysis of miRNAs from rubber tree (Hevea brasiliensis L.), the most important natural rubber-producing crop. To identify miRNAs and their target genes in rubber tree, high throughput sequencing combined with a computational approach was performed. Four small RNA libraries were constructed for deep sequencing from mature and young leaves of two rubber tree clones, PB 260 and PB 217, which provide high and low latex yield, respectively. 237 miRNAs belonging to 37 known miRNA families were identified, and northern hybridization validated miRNA expression and revealed developmental stage-dependent and clone-specific expression for some miRNAs. We took advantage of the newly released rubber tree genome assembly as well as the genomic databases from leafy spurge and cassava, two species related to rubber tree, and predicted 15 novel miRNAs.
Project description:MicroRNAs (miRNAs) are non-coding, short, single-stranded RNAs with essential roles in gene regulation in various organisms including higher plants. In contrast to the vast information on miRNAs from many economically important plants, almost nothing has been reported on the identification or analysis of miRNAs from rubber tree (Hevea brasiliensis L.), the most important natural rubber-producing crop. To identify miRNAs and their target genes in rubber tree, high throughput sequencing combined with a computational approach was performed. Four small RNA libraries were constructed for deep sequencing from mature and young leaves of two rubber tree clones, PB 260 and PB 217, which provide high and low latex yield, respectively. 237 miRNAs belonging to 37 known miRNA families were identified, and northern hybridization validated miRNA expression and revealed developmental stage-dependent and clone-specific expression for some miRNAs. We took advantage of the newly released rubber tree genome assembly as well as the genomic databases from leafy spurge and cassava, two species related to rubber tree, and predicted 15 novel miRNAs. 4 samples examined: PB260 mature leaves, PB260 young leaves, PB217 mature leaves, and PB217 young leaves.
Project description:In order elucidate the key signaling pathways in choroidal neovascularization, we induced choroidal angiogenesis by laser photocoagulation in 12 tree shrews and obtained mRNA profiles of their choroids and retinas by high-throughput transcriptome sequencing. Gene ontology(GO) and kyoto encyclopedia of genes and genomes(KEGG) enrichment analysis, hierarchical cluster analysis, weighted gene co-expression network analysis, protein-protein interaction (PPI) network analysis, and reverse transcription quantitative PCR (RT-qPCR) were performed.
Project description:Mangrove Kandelia obovata, an important coastal shelterbelt and landscape tree, is distributed in tropical and subtropical shores and likely delimited in the latitudinal range by varying sensitivity to cold. Here, we explored the temporal variations in physiological status and transcriptome profiling of K. obovata under natural frost conditions at ~32oN, as well as the positive role of exogenous abscisic acid (ABA) in cold resistance.
Project description:Recent advances in molecular and genetic studies about flowering time control have been increasingly available to elucidate the physiological mechanism underlying masting, the intermittent and synchronized production of a large amount of flowers and seeds in plant populations. To identify unexplored developmental and physiological processes associated with masting, genome-wide transcriptome analysis is a promising tool, but such analyses have yet to be performed. We established a field transcriptome using a typical masting species, Japanese beech (Fagus crenata Blume), over two years, and analyzed the data using a nonlinear time-series analysis called convergent cross mapping. Our field transcriptome was found to undergo numerous changes depending on the status of floral induction and season. An integrated approach of high-throughput transcriptomics and causal inference was successful at detecting novel causal regulatory relationships between nitrate transport and florigen synthesis/transport in a forest tree species. The synergistic activation of nitrate transport and floral transition could be adaptive to simultaneously satisfy floral transition at the appropriate timing and the nitrogen demand needed for flower formation.