Project description:Type 2 diabetes is associated with defective insulin secretion and reduced β-cell mass. Available treatments provide a temporary reprieve, but secondary failure rates are high, making insulin supplementation necessary. Reversibility of b-cell failure is a key translational question. Here, we reverse-engineered and interrogated pancreatic islet-specific regulatory networks to discover T2D-specific subpopulations characterized by metabolic-inflexibility and endocrine-progenitor/stem cell features. Single-cell gain- and loss-of-function and glucose-induced Ca++ flux analyses of top candidate MR in islet cells validated transcription factor BACH2 and associated epigenetic effectors as a key driver of T2D cell states. BACH2 knockout in T2D islets reversed cellular features of the disease, restoring a non-diabetic phenotype. BACH2-immunoreactive islet cells increased ~4-fold in diabetic patients, confirming the algorithmic prediction of clinically relevant subpopulations. Treatment with a BACH inhibitor lowered glycemia and increased plasma insulin levels in diabetic mice, and restored insulin secretion in diabetic mice and human islets. The findings suggest that T2D-specific populations of failing b-cells can be reversed and indicate pathways for pharmacological intervention, including via BACH2 inhibition.
Project description:We evaluated the expression of known human miRNAs in human hepatocellular carcinoma (HCC) and normal hepatic tissues from southeast China, and identified the differentially expressed miRNAs in HCC tissues. We use microRNA array platform from CapitalBio Corp. to access the miRNA expression profiles in HCC and non-tumor liver samples from Southeast China. There were 5 HCC samples and 3 non-tumor liver samples in our study. As the microarray platform we used was based on a older version of miRBase, we mapped the probe sequences to a newer version of miRBase before these data was applied to further analysis.
Project description:In the present study, we studied microbial composition and metabolic activity in the euphotic zone of the South China Sea. 8 samples were collected and subjected to metaproteomic analysis. Our results suggested that mixotrophic phototrophs-driven NDL carbon fixation along with phytoplankton-driven NRL carbon fixation determined primary production in the oligotrophic ocean’s euphotic zone.
Project description:We evaluated the expression of known human miRNAs in human hepatocellular carcinoma (HCC) and normal hepatic tissues from southeast China, and identified the differentially expressed miRNAs in HCC tissues.
Project description:AIMS/HYPOTHESIS: Pregnancies complicated by diabetes have a higher risk of adverse outcomes for mothers and children, including predisposition to disease later in life, such as metabolic syndrome and hypertension. We hypothesized that adverse outcomes from diabetic pregnancies may be linked to compromised placental function. Our goal in this study was to identify cellular and molecular abnormalities in diabetic placenta. METHODS: Using a mouse model of diabetic pregnancy, placental gene expression was assayed at midgestation and cellular composition was analyzed at various stages. Genome-wide expression profiling was validated by quantitative PCR, and tissue localization studies were performed to identify cellular correlates of altered gene expression in diabetic placenta. RESULTS: We detected significantly altered gene expression in diabetic placenta for genes expressed in the maternal as well as those in the embryonic compartments. We also found altered cellular composition of the decidual compartment. Furthermore, the junctional and labyrinth layers were reduced in diabetic placenta, accompanied by aberrant differentiation of spongiotrophoblast cells. CONCLUSIONS/INTERPRETATION: Diabetes during pregnancy alters transcriptional profiles in the murine placenta, affecting cells of both embryonic and maternal origin, and involving several genes not previously implicated in diabetic pregnancies. The molecular changes and abnormal differentiation of multiple cell types precede impaired growth of junctional zone and labyrinth, and placenta overall. Whether these changes represent direct responses to hyperglycaemia or physiological adaptations, they are likely to play a role in pregnancy complications and outcomes, and have implications for developmental origins of adult disease. The STZ diabetic mouse model was used to investigate gene expression changes in diabetic placentae at E10.5. Placentae were dissected from 5 different FVB dams at embryonic day 10.5 under diabetic conditions and from 5 control dams. Gene expression profiles from five individual placentae from independent pregnancies per group were compared.
Project description:Understanding and quantifying the effects of environmental factors influencing the variation of abundance and diversity of microbial communities was a key theme of ecology. For microbial communities, there were two factors proposed in explaining the variation in current theory, which were contemporary environmental heterogeneity and historical events. Here, we report a study to profile soil microbial structure, which infers functional roles of microbial communities, along the latitudinal gradient from the north to the south in China mainland, aiming to explore potential microbial responses to external condition, especially for global climate changes via a strategy of space-for-time substitution. Using a microarray-based metagenomics tool named GeoChip 5.0, we showed that microbial communities were distinct for most but not all of the sites. Using substantial statistical analyses, exploring the dominant factor in influencing the soil microbial communities along the latitudinal gradient. Substantial variations were apparent in nutrient cycling genes, but they were in line with the functional roles of these genes. 300 samples were collected from 30 sites along the latitudinal gradient, with 10 replicates in every site
Project description:Persistent mucosal inflammation and microbial infection are characteristic of Chronic Rhinosinusitis (CRS). Though mucosal microbiota dysbiosis is a characteristic feature of other chronic inflammatory diseases, the relationship between sinus microbiota composition and CRS is unknown. Here we demonstrate, using comparative microbiome profiling of a cohort of CRS patients and healthy subjects, that the sinus microbiota of CRS patients exhibit significantly reduced bacterial diversity. Characteristic of this community collapse is the depletion of multiple, phylogenetically distinct, Lactic Acid Bacteria and the concomitant increase in relative abundance of a single species, Corynebacterium tuberculostearicum. Recapitulating the conditions observed in our human cohort in a murine model confirmed the pathogenic potential of C. tuberculostearicum and the critical necessity for a replete mucosal microbiota to protect against this species. Moreover, we provide evidence that Lactobacillus sakei, identified from our comparative microbiome analyses as a potentially protective species, affords defense against C. tuberculostearicum sinus infection, even in the context of a depleted sinus bacterial community. These studies demonstrate that sinus mucosal health is highly dependent on the composition of the resident microbiota, and identifies a new sino-pathogen and a strong bacterial candidate for therapeutic intervention. A total of 14 samples were profiled for microbiome composition: 7 from non-sinusitis patients, and 7 from patients with clinically diagnosed chronic sinusitis.