Project description:Contaminated aquifer (Dusseldorf-Flinger, Germany) templates extracted from 5 sediment depths ranging between 6.4 and 8.4 m below ground and over 3 years of sampling were amplified for amplicon pyrosequencing using the primers Ba27f (5’-aga gtt tga tcm tgg ctc ag-3’) and Ba519r (5’- tat tac cgc ggc kgc tg-3’), extended as amplicon fusion primers with respective primer A or B adapters, key sequence and multiplex identifiers (MID) as recommended by 454/Roche. Amplicons were purified and pooled as specified by the manufacturer. Emulsion PCR (emPCR), purification of DNA-enriched beads and sequencing run were performed following protocols and using a 2nd generation pyrosequencer (454 GS FLX Titanium, Roche) as recommended by the developer. Quality filtering of the pyrosequencing reads was performed using the automatic amplicon pipeline of the GS Run Processor (Roche), with a slight modification concerning the valley filter (vfScanAllFlows false instead of TiOnly) to extract the sequences. Demultiplexed raw reads were furhter trimmed for quality and lenght (>250 bp).
Project description:Contaminated aquifer (Dusseldorf-Flinger, Germany) templates extracted from 5 sediment depths ranging between 6.4 and 8.4 m below ground and over 3 years of sampling were amplified for amplicon pyrosequencing using the primers Ba27f (5’-aga gtt tga tcm tgg ctc ag-3’) and Ba519r (5’- tat tac cgc ggc kgc tg-3’), extended as amplicon fusion primers with respective primer A or B adapters, key sequence and multiplex identifiers (MID) as recommended by 454/Roche. Amplicons were purified and pooled as specified by the manufacturer. Emulsion PCR (emPCR), purification of DNA-enriched beads and sequencing run were performed following protocols and using a 2nd generation pyrosequencer (454 GS FLX Titanium, Roche) as recommended by the developer. Quality filtering of the pyrosequencing reads was performed using the automatic amplicon pipeline of the GS Run Processor (Roche), with a slight modification concerning the valley filter (vfScanAllFlows false instead of TiOnly) to extract the sequences. Demultiplexed raw reads were furhter trimmed for quality and lenght (>250 bp). 15 samples examined in total from important plume zones of the aquifer sampled in Feb. 2006, Sep. 2008 and Jun. 2009 (5 every year of sampling).
Project description:Four cDNA libraries from immature embryos, mature embryos, microspore derived embryos and mature leaves were constructed. cDNA were sequenced by the Roche-454 GS-FLX.
Project description:Propionibacterium freudenreichii is an important starter culture used in the manufacture of Swiss-type cheeses. We have generated the complete genome sequence of a Propionibacterium freudenreichii ssp. shermanii strain JS at the Institute of Biotechnology, University of Helsinki, by using a combination of pyrosequencing with GS FLX and GS FLX Titanium series reagents (Roche) and SOLiD 4 (Life Technologies), ABI 3130xl Genetic Analyzer (Life Technologies), and PacBio RS II (Pacific Biosciences) instruments. Initial genome annotation was carried out using RAST, and additional functional annotation information for each CDS was obtained from BLANNOTATOR, CDD, and KAAS. Accession number for genome sequence is PRJEB12148. This submission is for the transcriptome analysis of Propionibakcterium freudenreichii in cheese ripening under warm and cold conditions. The RNA reads were mapped to the reference genome PRJEB12148.
Project description:Reports on common mutations in neuroendocrine tumors (NET) are rare and clonality of NET metastases has not been investigated in this tumor entity yet. We selected a NET and a the corresponding lymph node and liver metastases as well as the derivative cell lines to screen for somatic mutations in the primary NET and to track the fate of genetic changes (by Affymetrix SNP 6.0 micorarray and targeted resequencing by 454 GS FLX) and during metastasis and in vitro progression. using Affymetrix SNP 6.0 Arrays.