Project description:Purpose: The aim of the study was to compare the miRNA expression in non-infected (H) mammary gland parenchyma samples with that of glands infected with coagulase-positive staphy lococci (CoPS) or coagulase-negative staphylococci (CoNS) using next-generation sequencing. Methods: miRNA-seq analysis was performed on mammary gland parenchyma samples collected from non-infected cows and those infected with coagulase-positive or -negative staphylococci. The miRNA libraries were constructed from total RNA using NEBNext Multiplex Small RNA Library Prep Set for Illumina (New England Biolabs) according to the manufacturer protocol. The quantification of the obtained libraries was performed on a Qubit 2.0 spectrophotometer (Invitrogen, Life Technologies), while a quality control on a TapeStation 2200 instrument (D1000 ScreenTape; Agilent). Single-end cycle sequencing was performed on the HiScanSQ platform (Illumina) with the use of TruSeq SR Cluster Kit v3- CBOT-HS and TruSeq SBS Kit v 3 - HS (Illumina). MicroRNA differentially expressed between investigated groups were identified with the DESeq2 software. Results: Comparing the CoPS and H groups, 256 known and 260 potentially new miRNAs were identifed, including 32 that were diferentially expressed (p≤0.05), of which 27 were upregulated and 5 downregulated. Comparing the CoNS and H groups, 242 known and 171 new unique miRNAs were identifed: 10 were upregulated (p≤0.05), and 2 downregulated (p≤0.05). Comparing CoPS with H and CoNS with H, 5 Kyoto Encyclopedia of Genes and Genomes pathways were identifed; in both comparisons, diferentially-expressed miRNAs were associated with the bacterial invasion of epithelial cells and focal adhesion pathways. Four gene ontology terms were identifed in each comparison, with 2 being common to both immune system processes and signal transduction. Conclusions: Obtained results enabled us to characterize the miRNA profile of the mammary gland parenchyma tissue, not only the healthy one but also the tissue infected with coagulase-positive and negative staphylococci as well as allowed identification of miRNAs differing the examined groups and characteristic for the staphylococci infection. They also indicated that miRNAs, especially miR-99 and miR-182, play an essential role in the epigenetic regulation of a range of cellular processes, including immunological systems bacterial growth in dendritic cells and disease pathogenesis (miR-99), DNA repair and tumor progression (miR-182).
Project description:Transcriptional profiling in vivo in bovine secretory tissue from healthy (H) mammary gland and during infections with coagulase-negative Staphylococci (CoNS) and coagulase-positive Staphylococci (CoPS). The aim of this study was to examinate the global gene expression profiles of mammary gland tissues of infected and healthy (control) cows.
Project description:Transcriptional profiling in vivo in bovine secretory tissue from healthy (H) mammary gland and during infections with coagulase-negative Staphylococci (CoNS) and coagulase-positive Staphylococci (CoPS). The aim of this study was to examinate the global gene expression profiles of mammary gland tissues of infected and healthy (control) cows. Transcriptomes were compared of in the mammary glands of Holstein Friesian cows in two experiments, (H) vs (CoNS) cows and (H) vs (CoPS).
Project description:The study aims to identify genes associated with daptomycin resistance. Samples were hybridized on aminosilane coated slides with 70-mer oligos.
Project description:Objectives: Development of daptomycin resistance (DAPR) in Staphylococcus aureus is associated with clinical treatment failures. Mechanism(s) of such resistance has not been clearly defined. Methods: We studied an isogenic daptomycin-susceptible (DAPS) and daptomycin-resistant (DAPR) S. aureus strain pair (616; 701) from a patient with relapsing endocarditis during daptomycin treatment, using comparative transcriptomic and proteomic techniques. Results. Minor differences in genome content were found between strains by DNA hybridization. Transcriptomic analyses identified a number of genes differentially expressed in important functional categories: cell division, metabolism of bacterial envelopes and global regulation. Of note, the DAPR isolate exhibited reduced expression of the major cell wall autolysis gene coincident with upregulation of genes involved in wall teichoic acid production. Using quantitative (q)RT-PCR on gene cadre putatively involved in cationic peptide resistance, we formulated a putative regulatory network compatible with microarray data-sets, mainly implicating bacterial envelopes. Of interest, qRT-PCR of this same gene cadre from two distinct isogenic DAPS/DAPR clinical strain pairs revealed evidence of other strain dependent networks operative in the DAPR phenotype. Comparative proteomics of 616 vs 701 revealed differential abundance of proteins in various functional categories including: cell-wall associated targets and biofilm-formation proteins. Phenotypically, strains 616 and 701 showed major differences in ability to develop bacterial biofilms in presence of the antibacterial lipid, oleic acid. Conclusions: Compatible with previous in vitro observations, in vivo acquired DAPR in S. aureus is a complex, multistep phenomenon allowing for: i) strain dependent phenotypes; ii) transcriptome adaptation; and iii) modification of lipid and protein content of cellular envelopes. Daptomycin suceptible strain vs daptomycin non suceptible strain after daptomycin treatment
Project description:Regulatory RNAs (sRNAs) are now considered as major players in many physiological and adaptive responses in pathogenic bacteria. sRNAs have been extensively studied in Gram-negative bacteria, but less information is available in Gram-positive pathogens. There is a spread of multidrug-resistant (MDR) opportunistic organisms, grouped as “ESKAPE” pathogens, which comprise enterococci, a leading cause of hospital-acquired infections and outbreaks with emergence of MDR isolates, especially vancomycin-resistant Enterococcus faecium (VREF). Note that no information about sRNA expression is known in this major opportunistic pathogen. By transcriptomic and genomic analyses using E. faecium Aus0004 reference strain, 249 transcribed IGRs, including sRNA candidates, were detected and, using a series of cut-offs, this set was lowered down to 54 sRNAs while 7 that were predicted based on comparative sequence analysis. RNA-seq was performed with and without subinhibitory concentrations (SIC) of daptomycin, a cyclic lipopeptide antibiotic used for VREF infections. Under daptomycin SIC exposure, 260 genes (9.1% of the genome) had a significant alteration of expression including 80 upregulated genes and 180 downregulated genes. Among the repressed genes, a large proportion (55%) coded for proteins involved in carbohydrate and transport metabolism. Also, we focused on the 9 sRNAs exhibiting the highest expression, and all of them were confirmed as expressed along bacterial growth by Northern blots and qPCR. Out of these 9 sRNAs, four had significantly lower or higher expression in the presence of daptomycin SIC, and therefore responded to antibiotic exposure. Finally, we also tested the expression of these 9 sRNAs in a collection of isogenic Aus0004 mutants with increasing levels of daptomycin resistance, and we observed by qPCR that some sRNAs had a significantly modified expression in daptomycin resistance mutants. It highlights the significant implication of some of the E. faecium sRNAs in the early steps of the development of daptomycin resistance. This is the first experimental genome-wide sRNA identification in Gram-positive E. faecium, a leading cause of hospital acquired infections.
Project description:Several groups have shown that through evolution experiments, tolerance and resistance evolved rapidly under cyclic antibiotic treatment. In other words, intermittent antibiotic exposure performed in a typical adaptive laboratory evolution (ALE) experiments will “train” the bacteria to become tolerant/resistant to the drug. Using this experimental strategy, we performed in vitro laboratory evolution in MRSA using daptomycin, and mine novel daptomycin tolerance and resistance mutants, which were isolated at specific time points during the evolution experiments. Three daptomycin-tolerant isolates with different tolerance level were generated from our laboratory evolution (TOL2 and TOL5 with a mild-tolerance phenotype, and TOL6 with a high-tolerance phenotype). They all bear mutations at different genes, and have no increase in MIC towards daptomycin. Besides, we also isolated three daptomycin-resistant isolates (RES1, RES2, RES3) that have a single point mutation in the same gene, mprF, but at different locations, leading to an increased MIC towards daptomycin. Through proteomics, we uncovered the differential adaptation strategies of these daptomycin tolerant and resistant MRSA strains, and how they respond differently to antibiotics compared to the ancestral wild-type.
Project description:Daptomycin (DAP) is the last-resort treatment for heterogeneous Vancomycin-Intermediate-Staphylococcus aureus (hVISA) and Vancomycin-Intermediate-S.aureus (VISA), and DAP-resistance onset which is also linked to reduced vancomycin susceptibility, is an increasing public health problem. To have more insight into the mechanisms of daptomycin resistance, the comparative transcriptomes of two DAP-R (1C-3B) clinical isogenic isolates vs their DAP-S (1A-3A) counterparts were investigated by Illumina RNA-seq, the Rockhopper tool, computational filtering analyses and bioinformatic tools.