Project description:The Atlantic cod (Gadus morhua L.) is one of the most important species in the Baltic Sea with high ecological and economical value. To explore the differences in adaptation to salinity between Baltic cod subpopulation: western (Kiel Bight) and eastern (Gdańsk Bay) samples were analyzed through genome-wide oligonucleotide microarray.
Project description:The Atlantic cod (Gadus morhua L.) is one of the most important species in the Baltic Sea with high ecological and economical value. To explore the differences in adaptation to salinity between Baltic cod from different regions, western (Kiel Bight) and eastern (Gdańsk Bay) samples were analyzed through oligonucleotide microarray.
Project description:Effects of oil pollution and persistent organic pollutants (POPs) on the glycerophospholipids in the liver of male Atlantic cod (Gadus morhua)
Project description:This study was performed to validate the newly developed CGP Atlantic cod 20K oligonucleotide microarray. Atlantic cod (Gadus morhua) received an intraperitoneal injection of either formalin-killed, atypical Aeromonas salmonicida (Asal) or PBS and transcriptional profiles of spleen tissues from Asal-injected fish were compared to those from pre-injection control fish and PBS-injected control fish. Gene expression profiles resulting from this study were compared to those from suppression subtractive hybridization library studies, that were previously performed on the same samples, and to literature. Gene expression patterns of single genes were confirmed by QPCR analysis. This study has shown that the newly developed CGP Atlantic cod 20K oligo microarray platform is a valuable tool for cod genomic research.
Project description:Aquaculture is one of the fastest growing food production sectors in the world and further expansion is expected throughout the 21st century. However, climate change is threatening the development of the sector and action is needed to prepare the industry for the coming challenges. Using downscaled temperature projections based on the Intergovernmental Panel on Climate Change (IPCC) climate projection (Shared Socioeconomic Pathway, SSP2-4.5), we analysed potential future temperatures at a selected Atlantic cod (Gadus morhua L.) farm site in Northern Norway. Results showed that the farming area may experience increased temperatures the next 10–15 years, including more days with temperatures above 17°C. Based on the predicted future conditions, we designed a study with Atlantic cod (Gadus morhua L.) to evaluate effects from high temperature alone and in combination with Fransicella noatunensis infection. Fish were kept at 12°C and 17°C for eight weeks and samples of skin and spleen collected at different timepoints were analysed with transcriptomics, histology, scanning electron microscopy and immunohistochemistry.
Project description:Lipid metabolism is essential in maintaining energy homeostasis in multicellular organisms. In vertebrates, the peroxisome proliferator-activated receptors (PPARs, NR1C) regulate the expression of many genes involved in these processes. Four Ppar subtypes from Atlantic cod (Gadus morhua) were recently cloned and characterized. However, the downstream regulatory role of Ppars in cod lipid metabolism is presently not well understood or described. Here we study the involvement of Atlantic cod Ppar subtypes in systemic regulation of lipid metabolism using the model agonists WY14,643, GW501516, and tetradecylthioacetic acid, employing a multiple omics approach after an in vivo exposure situation.