Project description:We sampled the microbial community at the sea ice edge in McMurdo Sound, Ross Sea at the same location (-77.62S, 165.41E) for four weeks (as described in Wu et al 2019, Nat. Comms.). We had four sampling dates corresponding to weeks 1 to 4: December 28 2014, January 6, 15, and 22 2015. Large volumes of water (150--250 L) were filtered from 1 m depth at the sea ice edge, and passed through three filters sequentially (3.0, 0.8, and 0.1 um, each 293 mm Supor filters). Filters with collected biomass were then placed in tubes with a sucrose-based preservative buffer (20 mM EDTA, 400 mM NaCl, 0.75 M sucrose, 50 mM Tris-HCl, pH 8.0) and stored at -80 C until sample processing. We extracted proteins after buffer exchange into a 3\% SDS solution as previously described Wu et al 2019, Nat. Comms.
Project description:Microorganisms living in extreme environments represent a huge reservoir of novel antimicrobial compounds and possibly of novel chemical families. Antarctica is one of the most extraordinary places on Earth and exhibits many distinctive features. Antarctic microorganisms are well known producers of valuable secondary metabolites. Specifically, several Antarctic strains have been reported to inhibit opportunistic human pathogens strains belonging to Burkholderia cepacia complex (Bcc). Herein, we applied a biodiscovery pipeline for the identification of anti-Bcc compounds. Antarctic sub-sea sediments were collected from the Ross Sea, and used to isolate 25 microorganisms, which were phylogenetically affiliated to three bacterial genera (Psychrobacter, Arthrobacter, and Pseudomonas) via sequencing and analysis of 16S rRNA genes. They were then subjected to a primary cell-based screening to determine their bioactivity against Bcc strains. Positive isolates were used to produce crude extracts from microbial spent culture media, to perform the secondary screening. Strain Pseudomonas BNT1 was then selected for bioassay-guided purification employing SPE and HPLC. Finally, LC-MS and NMR structurally resolved the purified bioactive compounds. With this strategy, we achieved the isolation of three rhamnolipids, two of which were new, endowed with high (MIC < 1 μg/mL) and unreported antimicrobial activity against Bcc strains.