Project description:The human brain has changed dramatically since humans diverged from our closest living relatives, chimpanzees and the other great apes. However, the genetic and developmental programs underlying this divergence are not fully understood. Here, we generate single-nucleus RNA-seq data of human, chimpanzee and macaque adult prefrontal cortex. Spatial information is obtained by isolating nuclei from sequential sections sliced from basal to apical positions. By comparing transcriptome of different cell types in the three species, we map human-specific expression in adult prefrontal cortex. By comparing to single cell RNA-seq data of cerebral organoids of the same species, we find developmental differences that persist into adulthood, as well as cell state-specific changes that occur exclusively in the adult brain.
Project description:The human brain has changed dramatically since humans diverged from our closest living relatives, chimpanzees and the other great apes. However, the genetic and developmental programs underlying this divergence are not fully understood. Here, we generate single-nucleus RNA-seq data of human, chimpanzee and macaque adult prefrontal cortex. Spatial information is obtained by isolating nuclei from sequential sections sliced from basal to apical positions. Bulk RNA-seq is performed for the same sections to determine positional information of the sections, by comparing the section transcriptome with published transcriptome data of cortical layers in human, chimpanzee and macaque.
Project description:78 tissue samples from prefrontal cortex (PFC) in human and macaque The data from human and macaque PFC samples with different ages were used to estimate gene expression changes, including both protein-coding genes and lincRNAs, in PFC along lifespan in the two species.
Project description:Animal models provide opportunity to study neurobiological aspects of human alcoholism. Changes in gene expression have been implicated in mediating brain function, including reward system and addiction. The current study aimed to identify novel genes that may underlie ethanol preference. Microarray analysis comparing gene expression in nucleus accumbens (NAc), hippocampus (HP) and prefrontal medial cortex (mPFC) was performed in two rat strains selected for extreme levels of ethanol preference - Warsaw High Preferring (WHP) and Warsaw Low Preferring (WLP). The identified candidate genes may underlie differential ethanol preference in rat model of alcoholism. This is analysis of 18 RNA samples, including 9 technical replicates. Two strains of rats selected for extreme levels of ethanol preference (low preferring WLP and high preferring WHP) were compared. Three brain areas (nucleus accumbens, prefrontal medial cortex and hippocampus) were studied. For each brain area, 6 RNA samples (including 3 technical replicates) were analyzed. Each RNA sample consist of of equal amounts of total RNA from 3 male rats. Comparisons: Nucleus accumbens of WHP vs. Nucleus accumbens of WLP; Prefrontal medial cortex of WHP vs. Prefrontal medial cortex of WLP; Hippocampus of WHP vs. Hippocampus of WLP. 3 biological replicates in each comparison.
Project description:This SuperSeries is composed of the following subset Series: GSE17757: Gene expression data from primate postnatal brain in prefrontal cortex: time course GSE18012: miRNA expression data from human postnatal brain in prefrontal cortex: time course GSE18013: miRNA expression data from rhesus macaque postnatal brain in prefrontal cortex: time course Refer to individual Series
Project description:Gene expression changes determine functional differentiation during development and are associated with functional decline during aging. While developmental changes are tightly regulated, regulation of aging changes is not well established. To assess the regulatory basis of age-related changes and investigate the mechanism of regulatory transition between development and aging, we measured mRNA and microRNA expression patterns in brains of humans and rhesus macaques over the entire species’ lifespan. We find that in both species, developmental and aging changes overlap in the course of lifetime with many changes found at the late age initiating in early childhood. Keywords: miRNA Age Series Keywords: Non-coding RNA profiling by high throughput sequencing rhesus macaque post-mortem brain samples from the superior frontal gyrus region of the prefrontal cortex were collected. The age ranges of the indibiual in rhesus macaque covered the whole life span fom newborn to death.
Project description:Differential encoding in prefrontal cortex projection neuron classes across cognitive tasks We perform single nucleus RNAsequencing using a smartseq2 protocol on mouse prefrontal cortex neurons labeled by tdTomato in an Rbp4-cre;Ai14 mouse. Some cells were retrolabeled from various brain regions.
Project description:We applied next-generation sequencing to analyse changes in the expression of Dclk1 gene isoforms in the brain in response to several psychoactive drugs with diverse pharmacological mechanisms of action. We used bioinformatics tools to define the range and levels of Dclk1 transcriptional regulation in the mouse nucleus accumbens and prefrontal cortex