Project description:Comparison of severely emphysematous tissue removed at lung volume reduction surgery to that of normal or mildly emphysematous lung tissue resected from smokers with nodules suspicious for lung cancer. Data obtained from the 18 patients with severe emphysema and 12 patients with mild/no emphysema. Research may provide insights into the pathogenetic mechanisms involved in chronic obstructive pulmonary disease (COPD). Keywords: other
Project description:Azithromycin (AZM) reduces pulmonary inflammation and exacerbations in chronic obstructive pulmonary disease patients with emphysema. The antimicrobial effects of AZM on the lung microbiome are not known and may contribute to its beneficial effects. Methods. Twenty smokers with emphysema were randomized to receive AZM 250 mg or placebo daily for 8 weeks. Bronchoalveolar lavage (BAL) was performed at baseline and after treatment. Measurements included: rDNA gene quantity and sequence. Results. Compared with placebo, AZM did not alter bacterial burden but reduced α-diversity, decreasing 11 low abundance taxa, none of which are classical pulmonary pathogens. Conclusions. AZM treatment the lung microbiome
Project description:Azithromycin (AZM) reduces pulmonary inflammation and exacerbations in chronic obstructive pulmonary disease patients with emphysema. The antimicrobial effects of AZM on the lung microbiome are not known and may contribute to its beneficial effects. Methods. Twenty smokers with emphysema were randomized to receive AZM 250 mg or placebo daily for 8 weeks. Bronchoalveolar lavage (BAL) was performed at baseline and after treatment. Measurements included: rDNA gene quantity and sequence. Results. Compared with placebo, AZM did not alter bacterial burden but reduced α-diversity, decreasing 11 low abundance taxa, none of which are classical pulmonary pathogens. Conclusions. AZM treatment the lung microbiome Randomized trial comparing azithromycin (AZM) treatment with placebo for eight weeks. Bronchoalveolar lavage (BAL) samples were obtained before and after treatment to explore the effects of AZM on microbiome, in the lower airways. 16S rRNA was quantified and sequenced (MiSeq) The amplicons from total 39 samples are barcoded and the barcode is provided in the metadata_complete.txt file.
Project description:Background: CD8 cells seem to play an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, relatively little is known about their phenotype and function. Aims: To define the transcriptome of pulmonary CD8 cells in COPD and compare to paired circulating CD8 cells and smoker control pulmonary CD8 cells. COPD was defined according to the Global initiative for chronic Obstructive Lung Disease guidelines. Severity of disease was defined according to the patients lung function. In particular the forced evpiratroy volume in 1 second (FEV1).
Project description:Lung infection by influenza A viruses is a common cause of disease exacerbations in patients with chronic obstructive pulmonary disease (COPD), however, this process is difficult to study in human patients. Here we used a microfluidic human lung airway-on-a-chip (Airway Chip) lined by primary human bronchial epithelium interfaced with primary human pulmonary microvascular endothelium to model this process in vitro. Airway Chips containing bronchial epithelial cells from COPD patients successfully replicated the increased sensitivity to the lung airway to infection by both influenza H1N1 and H3N2 viruses compared to chips lined by epithelium from healthy donors, including enhanced viral loads and increased production of inflammatory cytokines. Transcriptomics analysis of the healthy and COPD epithelium following infection with influenza H1N1 virus on-chip resulted in identification of several novel markers of COPD
Project description:Epigenetics changes have been shown to be affected by cigarette smoking. It is possible that cigarette smoke (CS)-mediated DNA methylation would affect several cellular and pathophysiological processes, acute exacerbations, and comorbidity in lungs of patients with chronic obstructive pulmonary disease (COPD). We sought to determine whether genome-wide lung DNA methylation profiles of smokers and patients with COPD were significantly different from non-smokers. We isolated DNA from lung tissues of patients including 8 lifelong non-smokers, 8 current smokers, and 8 patients with COPD, and subsequently analyzed the samples using the Illumina’s Infinium HumanMethylation450 BeadChip.
Project description:Diaphragm muscles in Chronic Obstructive Pulmonary Disease (COPD) patients undergo an adaptive fast to slow transformation that includes cellular adaptations. This project studies the signaling mechanisms responsible for this transformation.
Project description:Pseudomonas aeruginosa is a common bacteria leading to exacerbations of chronic obstructive pulmonary disease (COPD) patients while this bacteria can be easily eradicated by the immune systems of healthy individuals. Human airway organoids derived from healthy individuals and COPD patients were infected with pseudomonas aeruginosa. This project aims (1) to understand the differences in gene expressions in healthy and COPD airway organoids during stable condition, without infection and (2) to investigate differential pathogenic mechanism (i.e. antimicrobial defense) of pseudomonoas aeruginosa infection in healthy and COPD populations. Three healthy donors and three COPD patients were included in this study and samples were collected with and without pseudomonas aeruginosa infection.
Project description:Abstract<br>BACKGROUND: Gene expression profiling (GEP) in cells obtained from peripheral blood has demonstrated to be a very useful approach for biomarker discovery and for studying molecular pathogenesis of prevalent diseases. While there is limited literature availble on gene expression markers associated to Chronic Obstructive Pulmonary Disease (COPD), the transcriptomic picture associated to critical respiratory illness in this disease is not known to the present moment. <br>RESULTS: By using Agilent microarray chips, we have profiled gene expression signatures in whole blood of 28 COPD patients hospitalized with distinct degree of respiratory compromise.12 of them needed of admission to the ICU, while 16 were admitted to the Respiratory Medicine Service. GeneSpring GX 11.0 software was used for performing statistical comparison of transcript levels between ICU and non ICU patients. Ingenuity pathway analysis 8.5 (IPA) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were employed to select, annotate and visualize genes by function and pathway (gene ontology). T-test evidenced 1501 genes differentially expressed between ICU and non ICU patients. IPA and KEGG analysis of the most representative biological functions revealed that ICU patients showed increased levels of neutrohil gene transcripts, being [cathepsin G (CTSG)], [elastase, neutrophil expressed (ELANE)], [proteinase 3 (PRTN3)], [myeloperoxidase (MPO)], [cathepsin D (CTSD)], [defensin, alpha 3, neutrophil-specific (DEFA3)], azurocidin 1 (AZU1)], [bactericidal/permeability-increasing protein (BPI)] the most representative ones. Proteins codified by these genes form part of the azurophilic granules of neutrophils and are involved in both antimicrobial defence and tissue damage. This ?neutrophil signature? was paralleled by necessity of advanced respiratory and vital support, and presence of bacterial infection.<br>CONCLUSION: study of transcriptomic signatures in blood suggests a central role of neutrophil proteases in COPD patients with critical respiratory illness. Measurement / modulation of the expression of these genes could represent an option for clinical monitoring and treatment of severe COPD exacerbations. <br><br>Keywords: COPD, critical, expression, gene, microarray, neutrophil, proteases.<br><br>