Project description:Examination the DNA methylation statues of the main subpopulation of Chinese Mongolian sheep. A high quality methylome of Chinese Mongolian sheep was obtained, and established a list of DMRs potentially association with sheep body size
Project description:The dorsal horn of the spinal cord transforms incoming somatosensory information and transmits it supraspinally to generate sensory perception, including pain and itch. Recent research using mouse Cre-driver lines has implicated specific populations of dorsal horn neurons in the transmission of different types of pain. In parallel, human genome-wide association studies (GWAS) have identified dozens of loci confidently associated with the genetic predisposition to chronic pain. The ability to connect controlled experiments in rodent models with human genetic studies could provide a platform for translational research, but the cell type heterogeneity of the dorsal horn and the complex genetic architecture of chronic pain have created challenges in bridging that gap. Here, we apply a variety of single cell genomic technologies and a comparative genomic analysis to identify conserved dorsal horn neuron subtypes whose open chromatin regions show enrichment for genetic variants associated with human chronic pain phenotypes. To achieve this, we first use single nucleus RNA-Seq and fluorescence in situ hybridization in Rhesus macaque to create a more detailed map of primate dorsal horn neuron subtypes. These were integrated with publicly available human and mouse single nucleus RNA-Seq datasets to create a multi-modal cross species atlas. Then, for the mouse dorsal horn, we combined single nucleus RNA-Seq, spatial transcriptomics, and single nucleus ATAC-Seq to infer spatial and epigenomic profiles of conserved dorsal horn neuron subtypes. Finally, we compared our conserved cell-type open chromatin resource to chronic pain GWAS and found that open chromatin regions of specific dorsal horn neuron subtypes showed enrichment for a variety of human chronic pain phenotypes. Our results provide a foundation to further explore how conserved dorsal horn neuron subtypes influence the transmission of pain signals.
Project description:FecB (also known as BMPR1B) is a crucial gene in sheep reproduction, which has a mutation (A746G) that was found to increase the ovulation rate and litter size. The FecB mutation is associated with reproductive endocrinology, such mutation can control external estrous characteristics and affect follicle-stimulating hormone during the estrous cycle. Previous researches showed that the FecB mutation can regulate the transcriptomic profiles in the reproductive-related tissues including hypothalamus, pituitary, and ovary during the estrous cycle of Small Tailed Han sheep (STH). However, little research has been reported on the correlation between FecB mutation and the estrous cycle in STH sheep oviduct. To investigate the coding and non-coding transcriptomic profiles involved in the estrous cycle and FecB in the sheep oviduct, RNA sequencing was performed to analyze the transcriptomic profiles of mRNAs and long non-coding RNAs (lncRNAs) in the oviduct during the estrous cycle of STH sheep with mutant (FecBBB) and wild-type (FecB++) genotypes. In total, 21,863 lncRNAs and 43,674 mRNAs were screened.Together, our results can provide novel insights into the oviductal transcriptomic function against a FecB mutation background in sheep reproduction.
Project description:Body size varies enormously among mammalian species. In small mammals, body growth is typically suppressed rapidly, within weeks, whereas in large mammals, growth is suppressed slowly, over years, allowing for a greater adult size. We recently reported evidence that body growth suppression in rodents is caused in part by a juvenile genetic program that occurs in multiple tissues simultaneously and involves the downregulation of a large set of growth-promoting genes. We hypothesized that this genetic program is conserved in large mammals but that its time course is evolutionarily modulated such that it plays out more slowly, allowing for more prolonged growth. Consistent with this hypothesis, using expression microarray analysis, we identified a set of genes that are downregulated with age in both juvenile sheep kidney and lung. This overlapping gene set was enriched for genes involved in cell proliferation and growth and showed striking similarity to a set of genes downregulated with age in multiple organs of the juvenile mouse and rat, indicating that the multiorgan juvenile genetic program previously described in rodents has been conserved in the 80 million years since sheep and rodents diverged in evolution. Using microarray and real-time PCR, we found that the pace of this program was most rapid in mice, more gradual in rats, and most gradual in sheep. The findings support the hypothesis that a growth-regulating genetic program is conserved among mammalian species but that its pace is modulated to allow more prolonged growth and therefore greater adult body size in larger mammals. Tissues samples were collect from Lung and Kindey respectively with five biological replications of sheep (Ovis aries) that were collected, frozen in liquid nitrogen, and stored at -70 °C and tested on bovine array.
Project description:Gestational BPA exposure in sheep induces metabolic phenotype in sheep characterized by peripheral insulin resistance and increased adipocyte size. Because insulin sensitivity can be regulated by various agents including free fatty acids (FFA), we hypothesize that gestational BPA exposure alters circulating FFA inducing dyslipidemia, a marker of metabolic disorder. Because saturated FFA is associated with insulin resistance, determination of the FFA profile in these species aid in understanding the underlying mechanism. Additionally, because of the non-monotonic nature of responses to BPA exposure dose response studies are also needed. This study will therefore assess plasma lipid profile in sheep exposed to three different doses of BPA prenatally and compared with untreated control animals
Project description:We carried out a cross species cattle-sheep array comparative genome hybridization (aCGH) experiment in order to identify copy number variations (CNVs) in the sheep genome analysing animals of Italian dairy breeds (Sarda, Bagnolese, Laticauda, Massese and Valle del Belice) using a tiling oligonucleotide array with ~385,000 probes designed on the bovine genome. We identified 135 CNV regions (CNVRs) covering about 10.5 Mb of the virtual sheep genome referred to the bovine genome (0.398%) with a mean and median equal to 77.6 kb and 55.9 kb, respectively. A comparative analysis between the identified sheep CNVRs and those reported in the cattle and goat genomes indicated that overlaps between sheep and goat and sheep and cattle CNVRs are highly significant (P<0.0001) suggesting that several chromosome regions might contain recurrent interspecies CNVRs. Many sheep CNVs affect genes with important biological functions. Further studies are needed to evaluate the functional relevance of these CNVs.
Project description:The sheep (Ovis aries) plays a major socio-economic role in the world. Copy number variations (CNVs) are increasingly recognized as a key and potent source of genetic variation and phenotypic diversity, but little is known about the extent to which CNVs contribute to genetic variation in Chinese sheep breeds. Analyses of CNVs in the genomes of eight sheep breeds were performed using the sheep SNP50 BeadChip genotyping array. A total of 111 CNV regions (CNVRs) were obtained from 160 Chinese sheep breeds. These CNVRs covered 13.75 Mb of the sheep genome sequence. A total of 22 Go terms and 17 candidate genes were obtained from the functional analysis. Ten CNVRs were selected for validation, of which 7 CNVRs were further experimentally confirmed by quantitative PCR. Four candidate genes were selected to confirm the results of the functional analysis. These results provide a resource for furthering understanding of ruminant biology, and for further improving the genetic quality of sheep breeds.
Project description:The dorsal horn of the spinal cord transforms incoming somatosensory information and transmits it supraspinally to generate sensory perception, including pain and itch. Recent research using mouse Cre-driver lines has implicated specific populations of dorsal horn neurons in the transmission of different types of pain. In parallel, human genome-wide association studies (GWAS) have identified dozens of loci confidently associated with the genetic predisposition to chronic pain. The ability to connect controlled experiments in rodent models with human genetic studies could provide a platform for translational research, but the cell type heterogeneity of the dorsal horn and the complex genetic architecture of chronic pain have created challenges in bridging that gap. Here, we apply a variety of single cell genomic technologies and a comparative genomic analysis to identify conserved dorsal horn neuron subtypes whose open chromatin regions show enrichment for genetic variants associated with human chronic pain phenotypes. To achieve this, we first use single nucleus RNA-Seq and fluorescence in situ hybridization in Rhesus macaque to create a more detailed map of primate dorsal horn neuron subtypes. These were integrated with publicly available human and mouse single nucleus RNA-Seq datasets to create a multi-modal cross species atlas. Then, for the mouse dorsal horn, we combined single nucleus RNA-Seq, spatial transcriptomics, and single nucleus ATAC-Seq to infer spatial and epigenomic profiles of conserved dorsal horn neuron subtypes. Finally, we compared our conserved cell-type open chromatin resource to chronic pain GWAS and found that open chromatin regions of specific dorsal horn neuron subtypes showed enrichment for a variety of human chronic pain phenotypes. Our results provide a foundation to further explore how conserved dorsal horn neuron subtypes influence the transmission of pain signals.