Project description:An essential tissue involved in the development and regulation of lipid metabolism in animals is adipose tissue. The “fat-tail” can supply energy for sheep during migration and winter when a low amount of dry matter intake is available. Tail fat content affects meat quality and varies significantly among the different breeds of sheep. Ghezel (fat-tailed) and Zel (thin-tailed) are two important local Iranian sheep breeds that show different patterns of fat storage. The current study presents the transcriptome characterization of tail fat using RNA-sequencing in order to get a better comprehension of the molecular mechanism of lipid storage in the two sheep breeds. The results of sequencing were analyzed with bioinformatics methods, including differentially expressed genes (DEGs) identification, functional enrichment analysis, structural classification of proteins, protein–protein interaction (PPI), network analysis and module analysis. The results revealed a total of332 DEGs between the Zel and Ghezel breed, with78 up-regulated and 254 down-regulated DEGs in the Zel breed. Identification of differential genes showed that some DEGs, such as IL-6, LIPG, SAA1, SOCS3 and HIF-1α, with the largest fold change had close association with lipid deposition. Also, important lipid storage genes such as FASN and SCPEP1 had high levels of expression. Furthermore, functional enrichment analysis revealed some pathways associated with fat deposition, such as “Fatty acid metabolism”, “Fatty acid biosynthesis” and“HIF-1 signaling pathway”. In addition, structural classification of proteins showed major DEGs in transcription factor classes such as JUNB, NR4A3, FOSL1, MAFF, NR4A1, CREB3L1 and ATF3 were up-regulated in the Zel breed. IL-6, JUNB, and related DEGs were up-regulated in the PPI network.HMGCS1, SUCLA2 and STT3B and related DEGs were down-regulated in the PPI network and had high topology scores as hub genes. This implies the DEGs of these modules are important candidate genes for tail fat metabolism and, therefore, can be further studied.
Project description:An essential tissue involved in the development and regulation of lipid metabolism in animals is adipose tissue. The “fat-tail” can supply energy for sheep during migration and winter when a low amount of dry matter intake is available. Tail fat content affects meat quality and varies significantly among the different breeds of sheep. Ghezel (fat-tailed) and Zel (thin-tailed) are two important local Iranian sheep breeds that show different patterns of fat storage. The current study presents the transcriptome characterization of tail fat using RNA-sequencing in order to get a better comprehension of the molecular mechanism of lipid storage in the two sheep breeds. The results of sequencing were analyzed with bioinformatics methods, including differentially expressed genes (DEGs) identification, functional enrichment analysis, structural classification of proteins, protein–protein interaction (PPI), network analysis and module analysis. The results revealed a total of332 DEGs between the Zel and Ghezel breed, with78 up-regulated and 254 down-regulated DEGs in the Zel breed. Identification of differential genes showed that some DEGs, such as IL-6, LIPG, SAA1, SOCS3 and HIF-1α, with the largest fold change had close association with lipid deposition. Also, important lipid storage genes such as FASN and SCPEP1 had high levels of expression. Furthermore, functional enrichment analysis revealed some pathways associated with fat deposition, such as “Fatty acid metabolism”, “Fatty acid biosynthesis” and“HIF-1 signaling pathway”. In addition, structural classification of proteins showed major DEGs in transcription factor classes such as JUNB, NR4A3, FOSL1, MAFF, NR4A1, CREB3L1 and ATF3 were up-regulated in the Zel breed. IL-6, JUNB, and related DEGs were up-regulated in the PPI network.HMGCS1, SUCLA2 and STT3B and related DEGs were down-regulated in the PPI network and had high topology scores as hub genes. This implies the DEGs of these modules are important candidate genes for tail fat metabolism and, therefore, can be further studied.
Project description:Background: Yellow catfish (Pelteobagrus fulvidraco) is one of the important aquaculture species in China. In recent years, due to the high breeding density, the increasing frequency of feeding, and the excessive addition of feed fat, the excessive deposition of body fat in cultured yellow catfish has become more frequent. MicroRNAs (miRNAs) are an important gene expression regulatory signal molecule that regulates liver fat synthesis and transport and play an important role in fat deposition. However, there is a little research on the mechanism of fatty liver caused by excessive deposition of liver fat. Results: After 60 days of high-fat stress, the growth and feed conversion rate of hybrid yellow catfish (Pelteobagrus fuIvidraco♀×P. vachelli♂) were significantly inhibited, and hepatosomatic index, viscerosomatic index, hepatic triglyceride and cholesterol, and red lipid droplets in liver tissues were increased. Through high-throughput sequencing, we constructed miRNA libraries of high-fat stress at 60d, identified 346 conserved miRNAs and 410 novel miRNAs, among which 13 differentially expressed miRNAs were screened between high-fat diet group and normal-fat diet group. Also, we constructed mRNA transcriptome libraries after high-fat stress. Potential target genes for differentially expressed miRNAs were identified by bioinformatics analysis. Seven miRNA-mRNA pairs were screened. The expression of differential miRNA and mRNA and potential binding sites were analyzed by qRT-PCR and dual luciferase assay. Hybrid yellow catfish could promote the oxidative degradation of liver glucose, reduce fatty acid peroxidation, regulate antioxidant enzyme activity and response of immune and inflammatory to relieve fat deposition and liver stress. Conclusions: The disorders of fat metabolism in liver not only result in feed wastage, increase metabolic burden of yellow catfish, but also cause immune function damage, resulting in a variety of nutritional diseases. The development of this study is to understand the molecular mechanism of hepatic fat deposition in yellow catfish. It has important biological significance for improving protection of liver against stress and healthy culture.
Project description:Chinese indigenous sheep can be classified into two types according to their tail morphology: fat-rumped and thin-tailed sheep, of which the typical breeds are Altay sheep and Tibetan sheep, respectively. To identify the differentially expressed proteins (DEPs) underlying the phenotypic differences between tail types, we used iTRAQ combined with multi-dimensional liquid chromatography tandem mass spectrometry (LC-MS/MS) technology to detect candidate proteins. We then subjected these to a database search, and identified the DEPs. Finally, bioinformatics technology was used to carry out GO functional and KEGG pathway analyses. A total of 3248 proteins were identified, of which 44 were up-regulated and 40 were down-regulated DEPs. Analyzing their GO function terms and KEGG pathways revealed that the functions of these DEPs are mainly binding, catalytic activity, structural molecule activity, molecular function regulator, and transporter activity. Among the genes encoding the DEPs, APOA2, GALK1, ADIPOQ, and NDUFS4 are associated with fat formation and metabolism.
Project description:In this study, scapular fat was collected from winter and summer Sunit sheep, and protein sequencing was used to identify key proteins in the process of cold resistance
Project description:Rice transitory yellow (RTYV) is the causal agent of rice transitory yellow disease which causes severe loss of rice yield in Asia countries. In this study, we have analyzed the relationship between symptom and host gene responses by RGDV infection.
Project description:The ovine Callipyge mutation causes postnatal muscle hypertrophy localized to the pelvic limbs and torso, as well as body leanness. The mechanism underpinning enhanced muscle mass is unclear, as is the systemic impact of the mutation. Using muscle fibre typing immunohistochemistry we confirmed muscle specific effects and demonstrated that affected muscles had greater prevalence and hypertrophy of type 2X fast twitch glycolytic fibres and decreased representation of types 1, 2C, 2A and/or 2AX fibres. To investigate potential systemic effects of the mutation, proton NMR spectra of plasma taken from lambs at 8 and 12 weeks of age were measured. Multivariate statistical analysis of plasma metabolite profiles demonstrated effects of development and genotype but not gender. Plasma from Callipyge lambs at 12 weeks of age, but not 8 weeks, was characterized by a metabolic profile consistent with contributions from the affected hypertrophic fast twitch glycolytic muscle fibres. Microarray analysis of the perirenal adipose tissue depot did not reveal a transcriptional effect of the mutation in this tissue. We conclude that there is an indirect systemic effect of the Callipyge mutation in skeletal muscle in the form of changes of blood metabolites, which may contribute to secondary phenotypes such as body leanness. Microarrays were used for transcription profiling of kidney fat samples taken from Callipyge (n=4) and wild type (n=4) lambs at 12 weeks of age. Sheep used in this experiment were bred from a research flock of Dorset/Suffolk/Rambouillet cross-bred sheep raised at Utah State University and cared for and euthanased for sample collection in accordance with the animal ethics guidelines of Utah State University (Utah, USA). Kidney fat (KF) samples were taken from lambs at 12 weeks of age; four callipyge (CN) genotype animals and four normal (NN) genotype animals were compared.
Project description:Rice transitory yellow (RTYV) is the causal agent of rice transitory yellow disease which causes severe loss of rice yield in Asia countries. In this study, we have analyzed the relationship between symptom and host gene responses by RGDV infection. Comparison between RTYV and mock infected rice. Biological replicates: 3 control, 3 infected, independently grown and harvested. 1 samples derived from 5 plants grown under same conditons
Project description:We report the identification of dopaminechrome tautomerase (DPT) that biosynthesizes 5,6-dihydroxyindole from dopaminechrome in Drosophila. We show that this enzyme is encoded by the yellow-h gene.
Project description:Reproduction, as a physiologically complex process, can significantly affect the development of the sheep industry. However, a lack of overall understanding to sheep fecundity has long blocked the progress in sheep breeding and husbandry. Herein, in present study, we aimed to identify differentially expressed proteins (DEPs) from hypothalamus in sheep without FecB mutation in two comparison groups: polytocous (PF) versus (vs.) monotocous (MF) sheep at follicular phase and polytocous (PL) vs. monotocous (ML) sheep at luteal phase,expecting to provide an alternative method to identify DEPs associated with sheep prolificacy from the hypothalamus.