Project description:BackgroundBiotechnological processes for efficient resource recovery from residual materials rely on complex conversions carried out by reactor microbiomes. Chain elongation microbiomes produce valuable medium-chain carboxylates (MCC) that can be used as biobased starting materials in the chemical, agriculture and food industry. In this study, sunflower oil is used as an application-compatible solvent to accumulate microbially produced MCC during extractive lactate-based chain elongation. The MCC-enriched solvent is harvested as a potential novel product for direct application without further MCC purification, e.g., direct use for animal nutrition. Sunflower oil biocompatibility, in situ extraction performance and effects on chain elongation were evaluated in batch and continuous experiments. Microbial community composition and dynamics of continuous experiments were analyzed based on 16S rRNA gene sequencing data. Potential applications of MCC-enriched solvents along with future research directions are discussed.ResultsSunflower oil showed high MCC extraction specificity and similar biocompatibility to oleyl alcohol in batch extractive fermentation of lactate and food waste. Continuous chain elongation microbiomes produced the MCC n-caproate (nC6) and n-caprylate (nC8) from L-lactate and acetate at pH 5.0 standing high undissociated n-caproic acid concentrations (3 g L-1). Extractive chain elongation with sunflower oil relieved apparent toxicity of MCC and production rates and selectivities reached maximum values of 5.16 ± 0.41 g nC6 L-1 d-1 (MCC: 11.5 g COD L-1 d-1) and 84 ± 5% (e- eq MCC per e- eq products), respectively. MCC were selectively enriched in sunflower oil to concentrations up to 72 g nC6 L-1 and 3 g nC8 L-1, equivalent to 8.3 wt% in MCC-enriched sunflower oil. Fermentation at pH 7.0 produced propionate and n-butyrate instead of MCC. Sunflower oil showed stable linoleic and oleic acids composition during extractive chain elongation regardless of pH conditions. Reactor microbiomes showed reduced diversity at pH 5.0 with MCC production linked to Caproiciproducens co-occurring with Clostridium tyrobutyricum, Clostridium luticellarii and Lactobacillus species. Abundant taxa at pH 7.0 were Anaerotignum, Lachnospiraceae and Sporoanaerobacter.ConclusionsSunflower oil is a suitable biobased solvent to selectively concentrate MCC. Extractive reactor microbiomes produced MCC with improved selectivity and production rate, while downstream processing complexity was reduced. Potential applications of MCC-enriched solvents may include feed, food and biofuels purposes.
Project description:Feeding microbial communities with both organic and inorganic substrates can improve sustainability and feasibility of chain elongation processes. Sustainably produced H2 , CO2 , and CO can be co-fed to microorganisms as a source for acetyl-CoA, while a small amount of an ATP-generating organic substrate helps overcome the kinetic hindrances associated with autotrophic carboxylate production. Here, we operated two semi-continuous bioreactor systems with continuous recirculation of H2 , CO2 , and CO while co-feeding an organic model feedstock (lactate and acetate) to understand how a mixotrophic community is shaped during carboxylate production. Contrary to the assumption that H2 , CO2 , and CO support chain elongation via ethanol production in open cultures, significant correlations (p < 0.01) indicated that relatives of Clostridium luticellarii and Eubacterium aggregans produced carboxylates (acetate to n-caproate) while consuming H2 , CO2 , CO, and lactate themselves. After 100 days, the enriched community was dominated by these two bacteria coexisting in cyclic dynamics shaped by the CO partial pressure. Homoacetogenesis was strongest when the acetate concentration was low (3.2 g L-1 ), while heterotrophs had the following roles: Pseudoramibacter, Oscillibacter, and Colidextribacter contributed to n-caproate production and Clostridium tyrobutyricum and Acidipropionibacterium spp. grew opportunistically producing n-butyrate and propionate, respectively. The mixotrophic chain elongation community was more efficient in carboxylate production compared with the heterotrophic one and maintained average carbon fixation rates between 0.088 and 1.4 g CO2 equivalents L-1 days-1 . The extra H2 and CO consumed routed 82% more electrons to carboxylates and 50% more electrons to carboxylates longer than acetate. This study shows for the first time long-term, stable production of short- and medium-chain carboxylates with a mixotrophic community.
Project description:The dataset provides the whole proteome of the anammox bacterium "Candidatus Kuenenia Stuttgartiensis" strain CSTR1 growing planctonically in semi-CSTR reactor. The bacteria were growing at high growth rate (0.33 d-1) (reactor HRT 3d).