Project description:Ephydatia muelleri is a cosmopolitan freshwater demosponge, with potential to become a model system. We have participated in a large collaborative project to sequence the genome (PRJNA579531), methylome, transcriptome for this species, aiming to better understand the biology of this sponge species. In terms of DNA methylation, it presents relatively low methylation levels compared to the methylomes of other sponges (A. queenslandica and S. ciliatum), suggesting quite a lot of varation within the sponge phylum.
Project description:Clinical use of intraoperative auto-transfusion requires the removal of platelets and plasma proteins due to the pump-based suction and water-soluble anticoagulant administration, which causes dilutional coagulopathy. Herein, we develop a carboxylated and sulfonated heparin-mimetic polymer-modified sponge that could spontaneously adsorb blood (1.149 kg/m-2 s-1/2) along with instantaneous anticoagulation. We demonstrate that intrinsic coagulation factors (especially XI) are inactivated by adsorption to the sponge surface, while inactivation of thrombin in the sponge-treated plasma effectively inhibits the common coagulation pathway. Benefiting from the multiple inhibitory effects of sponge on coagulation enzymes and calcium depletion, the whole blood auto-transfusion in trauma-induced hemorrhage is unprecedentedly realized. The transfusion of collected blood favors faster recovery of hemostasis compared to traditional heparinized blood in an animal model. Our work not only develops a safe and convenient approach for whole blood auto-transfusion, but also provides the mechanism of action of self-anticoagulant heparin-mimetic polymer-modified surfaces.
Project description:This project contains LC-MS/MS data for analysis on neuropeptides in Nematostella vectensis, Ephydatia fluviatilis and Bolinopsis mikado.
Project description:A major challenge in biology is to determine how evolutionarily novel characters originate, however, mechanistic explanations for the origin of novelties are almost completely unknown. The evolution of mammalianM-BM- pregnancy is an excellent system in which to study the origin of novelties because extant mammals preserve major stages in the transition from egg-laying to live-birth. To determine the molecular bases of this transition we characterized the pregnant/gravid uterine transcriptome from tetrapods, including species in the three major mammalian lineages, and used ancestral transcriptome reconstruction to trace the evolutionary history of uterine gene expression. We show that thousands of genes evolved endometrial expression during the origins of mammalian pregnancy, including numerous genes that mediate maternal-fetal communication and immunotolerance.Furthermore we show that thousands of regulatory elements active inM-BM- decidualized human endometrial stromal cellsM-BM- are derived from ancient mammalian transposable elements which provided binding sites for transcription factors that mediate decidualization and endometrial cell-type identity.M-BM- Our results indicate that one of the defining mammalian novelties evolved via domestication of ancient mammalian transposable elements into hormone-responsive regulatory elements throughout the genome. Examination of histone modification and DNAse hypersensitivity in decidualized dESC