Project description:Bat adenoviruses are a group of recently identified adenoviruses (AdVs) which are highly prevalent in bats yet share low similarity to known AdVs from other species. In this study, deep RNA sequencing was used to analyze the transcriptome at five time points following the infection of a bat AdV in a kidney cell line derived from a myotis bat species. Evidence of AdV replication was observed with the proportion of viral RNAs ranging from 0.01% at 6 h to 1.3% at 18 h. Further analysis of viral temporal gene expression revealed three replication stages; the early stage genes encoding mainly for host interaction proteins, the intermediate stage genes for the DNA replication and assembly proteins, and the late stage genes for most structural proteins. Several bat AdV genes were expressed at stages that differed from their counterpart genes previously reported for human AdV. In addition, single-base resolution splice sites of several genes and promoter regions of all 30 viral genes were fully determined. Simultaneously, the temporal cellular gene expression profiles were identified. The most overrepresented functional categories of the differentially expressed genes were related to cellular immune response, transcription, translation, and DNA replication and repair. Taken together, the deep RNA sequencing provided a global, transcriptional profile of the novel BtAdV and the virus-host interactions, which will be useful for the understanding and investigation of AdV replication, pathogenesis and specific virus-bat interactions in future research. Deep RNA sequencing was used to analyze the transcriptome at five time points(0h,6h,8h, 12h 18h) following the infection of a bat AdV in a bat kidney cell.
Project description:Arbovirus transmission by sand flies is a growing public health concern, yet the early skin events shaping infection outcomes remain undefined. We establish a new mouse model of Toscana virus (TOSV) infection that incorporates sand fly salivary factors to mimic natural transmission. Saliva from two distinct sand fly genera significantly enhanced infection and promoted neurological signs and joint inflammation, recapitulating key features of human TOSV disease. In the skin, dermal macrophages and fibroblasts were the main infected cell types, but only fibroblasts generated infectious virus. Saliva reprogrammed fibroblasts into a wound-healing state permissive to viral replication, driving local viral amplification, systemic spread, and thereby clinical disease. These findings identify skin fibroblasts as central determinants of host susceptibility and reveal that sand fly saliva actively remodels the skin to exacerbate viral pathogenesis. This work redefines the skin’s role in sand fly-transmitted infection and highlights new targets for therapeutic and vaccine development.
Project description:Bats are tolerant to highly pathogenic viruses such as Marburg, Ebola, and Nipah, suggesting the presence of a unique immune tolerance toward viral infection. Here, we compared SARS-CoV-2 infection of human and bat (Rhinolophus ferrumequinum) pluripotent cells and fibroblasts. Since bat cells do not express an ACE2 receptor that allows virus infection, we transduced the human ACE2 receptor into the cells and found that transduced cells can be infected with SARS-CoV-2. Compared to human ESCs-hA, infected bat iPSCs-hA produced about a 100-fold lower level of infectious virus and displayed lower toxicity. In contrast, bat fibroblasts (BEF-hA) produced no infectious virus while being infectable and synthesizing viral RNA and proteins, suggesting abortive infection. Indeed, electron microscopy failed to detect virus-like particles in infected bat fibroblasts in contrast to bat iPSCs or human cells, consistent with the latter producing infectious viruses. This suggests that bat somatic but not pluripotent cells have an effective mechanism to control virus replication. Consistent with previous results by others, we find that bat cells have a constitutively activated innate immune system, which might limit SARS-CoV-2 infection compared to human cells.
Project description:Saliva is a convenient non-invasive source of liquid biopsy to monitor human health and diagnose diseases. In particular, extracellular vesicles (EVs) in saliva can potentially reveal clinically relevant information for systemic health. Recent studies have shown that RNA in saliva EVs could be exploited as biomarkers for disease diagnosis. However, there is no standardized protocol for profiling RNA in saliva EV nor clear guideline on selecting saliva fractions for biomarker analysis. To address these issues, we established a robust protocol for small RNA profiling from fractionated saliva. With this method, we performed comprehensive small RNA sequencing of four saliva fractions, including cell-free saliva (CFS), EV-depleted saliva (EV-D), exosome (EXO), and microvesicle (MV) from ten healthy volunteers. Methods: To address these issues, we established a robust protocol for small RNA profiling from fractionated saliva. With this method, we performed comprehensive small RNA sequencing of four saliva fractions, including cell-free saliva (CFS), EV-depleted saliva (EV-D), exosome (EXO), and microvesicle (MV) from ten healthy volunteers.
Project description:Exosomes are molecular entities derived from membrane vesicles of endocytic origin secreted by most cell types. These vesicles are implicated in cell-to-cell communication, deliver proteins and mRNA molecules between cells. Recent studies have shown that exosomes are found in body fluids such as saliva, blood, urine, amniotic fluid, malignant ascites, bronchoalveolar lavage fluid, synovial fluids and breast milk. Exosomes secreted through human saliva contain mRNA may potentially be useful for diagnostic purposes. Although the exact protective mechanism of saliva RNA is a topic of debate, the consensus is that the enrichment of mRNAs in these nano-vesicles in one of the features of the biomarker discoveries. Our aim was to determine if exosomes are present in human saliva and to nano-characterize their transcriptomic content. Exosomes were purified by differential ultracentrifugation, identified by immunoelectron microscopy, flow cytometry and western blot using a CD-63 antibody. Atomic force microscopy studies revealed ultra structural analysis of both size and density of exosomes. Microarray analysis revealed the presence of 590 mRNA core transcripts are relatively stable inside the exosomes, which can be of saliva mRNA biomarkers. Exosomal mRNA stability was determined by detergent lyses with treatment of RNase. Under in vitro conditions fluorescent dye labeled saliva exosomes were able to communicate between human oral keratinocytes studied by using fluorescence microscopy. The RNA from saliva exosomes can transfer their genetic information to human oral keratinocytes and alters gene expression in the new location. Together, these results suggest that saliva is involved in mRNA trafficking via exosomes, and provides a mechanism for cargoing passenger mRNAs. Our findings are consistent with proposal that exosomes can shuttle RNAs between cells and mRNA is protected inside these vesicles may be a possible resource for biomarker discovery. Keywords: Human saliva, exosomes, mRNA profiling, gene expression, disease diagnosis
Project description:Bat adenoviruses are a group of recently identified adenoviruses (AdVs) which are highly prevalent in bats yet share low similarity to known AdVs from other species. In this study, deep RNA sequencing was used to analyze the transcriptome at five time points following the infection of a bat AdV in a kidney cell line derived from a myotis bat species. Evidence of AdV replication was observed with the proportion of viral RNAs ranging from 0.01% at 6 h to 1.3% at 18 h. Further analysis of viral temporal gene expression revealed three replication stages; the early stage genes encoding mainly for host interaction proteins, the intermediate stage genes for the DNA replication and assembly proteins, and the late stage genes for most structural proteins. Several bat AdV genes were expressed at stages that differed from their counterpart genes previously reported for human AdV. In addition, single-base resolution splice sites of several genes and promoter regions of all 30 viral genes were fully determined. Simultaneously, the temporal cellular gene expression profiles were identified. The most overrepresented functional categories of the differentially expressed genes were related to cellular immune response, transcription, translation, and DNA replication and repair. Taken together, the deep RNA sequencing provided a global, transcriptional profile of the novel BtAdV and the virus-host interactions, which will be useful for the understanding and investigation of AdV replication, pathogenesis and specific virus-bat interactions in future research.