Project description:Neisseria musculi is an oral commensal of wild-caught mice. Here, we report the complete genome sequence of N. musculi strain NW831, generated using a combination of the Illumina and PacBio platforms.
| S-EPMC8354546 | biostudies-literature
Project description:Description of Entomococcus gen nov and Properpaenibacillus gen nov
Project description:The paper focuses on the correction of Illumina WGS sequencing reads. We provide an extensive evaluation of the existing correctors. To this end, we measure an impact of the correction on variant calling (VC) as well as de novo assembly. It shows, that in selected cases read correction improves the VC results quality. We also examine the algorithms behaviour in a processing of Illumina NovaSeq reads, with different reads quality characteristics than in older sequencers. We show that most of the algorithms are ready to cope with such reads. Finally, we introduce a new version of RECKONER, our read corrector, by optimizing it and equipping with a new correction strategy. Currently, RECKONER allows to correct high-coverage human reads in less than 2.5 h, is able to cope with two types of reads errors: indels and substitutions, and utilizes a new, based on a two lengths of oligomers, correction verification technique.
Project description:MotivationIllumina Sequencing data can provide high coverage of a genome by relatively short (most often 100 bp to 150 bp) reads at a low cost. Even with low (advertised 1%) error rate, 100 × coverage Illumina data on average has an error in some read at every base in the genome. These errors make handling the data more complicated because they result in a large number of low-count erroneous k-mers in the reads. However, there is enough information in the reads to correct most of the sequencing errors, thus making subsequent use of the data (e.g. for mapping or assembly) easier. Here we use the term "error correction" to denote the reduction in errors due to both changes in individual bases and trimming of unusable sequence. We developed an error correction software called QuorUM. QuorUM is mainly aimed at error correcting Illumina reads for subsequent assembly. It is designed around the novel idea of minimizing the number of distinct erroneous k-mers in the output reads and preserving the most true k-mers, and we introduce a composite statistic π that measures how successful we are at achieving this dual goal. We evaluate the performance of QuorUM by correcting actual Illumina reads from genomes for which a reference assembly is available.ResultsWe produce trimmed and error-corrected reads that result in assemblies with longer contigs and fewer errors. We compared QuorUM against several published error correctors and found that it is the best performer in most metrics we use. QuorUM is efficiently implemented making use of current multi-core computing architectures and it is suitable for large data sets (1 billion bases checked and corrected per day per core). We also demonstrate that a third-party assembler (SOAPdenovo) benefits significantly from using QuorUM error-corrected reads. QuorUM error corrected reads result in a factor of 1.1 to 4 improvement in N50 contig size compared to using the original reads with SOAPdenovo for the data sets investigated.AvailabilityQuorUM is distributed as an independent software package and as a module of the MaSuRCA assembly software. Both are available under the GPL open source license at http://www.genome.umd.edu.Contactgmarcais@umd.edu.
| S-EPMC4471408 | biostudies-literature
Project description:Ezomonas gen. nov. genome taxonomy
| PRJDB9476 | ENA
Project description:Lascolacoccus vaginalis gen. nov., sp. nov., strain KHD3T