Project description:In the context of HLA-DP-mismatched allogeneic stem cell transplantation, mismatched HLA-DP alleles can provoke profound allo-HLA-DP-specific immune responses from the donor T-cell repertoire leading to graft-versus-leukemia effect and/or graft-versus-host disease in the patient. The magnitude of allo-HLA-DP-specific immune responses has been shown to depend on the specific HLA-DP disparity between donor and patient and the immunogenicity of the mismatched HLA-DP allele(s). HLA-DP peptidome clustering (DPC) was developed to classify the HLA-DP molecules based on similarities and differences in their peptide-binding motifs. To investigate a possible categorization of HLA-DP molecules based on overlap of presented peptides, we identified and compared the peptidomes of the thirteen most frequently expressed HLA-DP molecules. Our categorization based on shared peptides was in line with the DPC classification. We found that the HLA-DP molecules within the previously defined groups DPC-1 or DPC-3 shared the largest numbers of presented peptides. However, the HLA-DP molecules in DPC-2 segregated into two subgroups based on the overlap in presented peptides. Besides overlap in presented peptides within the DPC groups, a substantial number of peptides was also found to be shared between HLA-DP molecules from different DPC groups, especially for groups DPC-1 and -2. The functional relevance of these findings was illustrated by demonstration of cross-reactivity of allo-HLA-DP-reactive T-cell clones not only against HLA-DP molecules within one DPC group, but also across different DPC groups. The promiscuity of peptides presented in various HLA-DP molecules and the cross-reactivity against different HLA-DP molecules demonstrate that these molecules cannot be strictly categorized in immunogenicity groups.
Project description:In this study we investigate the potential of targeting citrullinated GRP78 for cancer therapy. We select five peptides and show the identification CD4 T cell responses to one citrullinated GRP78 epitope that is restricted through HLA DP*0401 and HLA-DR*0101 alleles. This peptide is detected by mass spectrometry in B16 melanoma grown in vivo and citrulline specific CD4 responses to this epitope mediate efficient therapy of established B16 melanoma tumours in HHDII/DP4 transgenic mouse model. We demonstrate the existence of a repertoire of responses to the citrullinated GRP78 peptide in healthy individuals.
Project description:The development of neutralizing antibodies (inhibitors) against coagulation factor VIII (FVIII) poses a major challenge in hemophilia A (HA) treatment. The formation of FVIII inhibitors is a CD4+ T-cell-dependent mechanism which includes anti- gen presenting cells (APC), B- and T-helper lymphocytes. APC present FVIII-derived peptides on major histocompatibility complex class II (MHC-II) to CD4+ T cells. We previously established a mass spectrometry-based approach to delineate the FVIII repertoire presented on HLA-DR and HLA-DQ. In this study, specific attention was directed towards the identification of FVIII peptides presented on HLA-DP. A data-set of naturally processed FVIII peptides was generated by incubating human FVIII with immature monocyte-derived dendritic cells (moDC) from HLA-typed healthy donors. Using this method, we iden- tified 176 to 1,352 different HLA-DP presented peptides per donor, including 26 different FVIII-derived peptides. The most frequently presented peptides derived from the A3 and C2 domains of FVIII. Comparison of the FVIII repertoire presented on HLA-DP with that presented on HLA-DR revealed considerable overlap but also suggested preferential presentation of specific peptides on either HLA-DR or HLA-DP. Fourteen FVIII peptides presented on HLA-DP were synthesized and evalu- ated for their binding ability to the commonly expressed HLA-DP4 molecule which is highly prevalent in the Caucasian population. Peptide binding studies showed that 7 of 14 peptides competed with a reference peptide to HLA-DP4. Interest- ingly, an A3 domain-derived peptide bound with high affinity to HLA-DP4, positioning this peptide as a prime candidate for the development of novel peptide-based tolerogenic strategies for FVIII inhibitors.
Project description:Accurate prediction of antigen presentation by Human Leukocyte Antigen (HLA) class II molecules is crucial for rational development of immunotherapies and vaccines targeting CD4 T cell activation. So far, most prediction methods for HLA class II antigen presentation have focused on HLA-DR due to limited availability of immunopeptidomics data for HLA-DQ and HLA-DP, while not taking into account alternative peptide binding modes. Here, we present an update to the NetMHCIIpan prediction method which closes the performance gap between all three HLA class II loci. We accomplish this by first integrating large immunopeptidomics datasets describing the HLA class II specificity space across loci using a refined machine learning framework that accommodates inverted peptide binders. Next, we apply targeted immunopeptidomics assays to generate novel data that covers additional HLA-DP specificities. The final method, NetMHCIIpan-4.3, achieves high accuracy and molecular coverage across all HLA class II allotypes.