Project description:Formalin induces inter- and intra-molecular crosslinks within exposed cells. This cross-linking can be exploited to characterise chromatin state as in the FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) and MNase (micrococcal nuclease) assays. Here, we optimised the FAIRE and MNase assays for application upon heavily-fixed tissues as is typically found in historical formalin-preserved museum specimens. We demonstrate these assays in formalin-fixed mouse specimens and compare the chromatin signatures to specimen-matched fresh tissues. We found that heavy formalin fixation modulates rather than eliminates signatures of differential chromatin accessibility and that these chromatin profiles are reproducible, tissue-specific and sex-specific in vertebrate specimens.
Project description:One tooth of a lamprey and one piece of trunc skin was lysed and analysed for its protein content. The samples were generously provided by the Museum of Natural History Vienna. The samples were stored in ethanol and the origin of the specimen is not known.
Project description:Formalin induces inter- and intra-molecular crosslinks within exposed cells. This cross-linking can be exploited to characterise chromatin state as in the FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) and MNase (micrococcal nuclease) assays. Here, we optimised the FAIRE and MNase assays for application upon heavily-fixed tissues as is typically found in historical formalin-preserved museum specimens. We demonstrate these assays in formalin-fixed mouse specimens and compare the chromatin signatures to specimen-matched fresh tissues. We found that heavy formalin fixation modulates rather than eliminates signatures of differential chromatin accessibility and that these chromatin profiles are reproducible, tissue-specific and sex-specific in vertebrate specimens.
2024-03-01 | GSE256158 | GEO
Project description:Xerces blue butterfly: de novo sequencing of a museum specimen