Project description:The fungal pathogen Fusarium moniliforme causes ear rot in maize. Ear rot in maize is a destructive disease globally caused by Fusarium moniliforme , due to decrease of grain yield and increase of risks in raising livestock by mycotoxins production. Plants have developed various defense pathways to cope with pathogens. We used microarrays to detail the global programme of gene expression during the infection process of Fusarium moniliforme in its host plant to get insights into the defense programs and the host processes potentially involved in plant defense against this pathogen.
Project description:The fungal pathogen Fusarium moniliforme causes ear rot in maize. Ear rot in maize is a destructive disease globally caused by Fusarium moniliforme , due to decrease of grain yield and increase of risks in raising livestock by mycotoxins production. Plants have developed various defense pathways to cope with pathogens. We used microarrays to detail the global programme of gene expression during the infection process of Fusarium moniliforme in its host plant to get insights into the defense programs and the host processes potentially involved in plant defense against this pathogen. Experiment Overall Design: In two compared independent experiments plants were infected with the Fusarium moniliforme. Samples from infected bracts of resistant maize (Bt-1) as well as susceptible maize (Ye478) were taken at 4 days post infection. Samples from uninfected control plants were taken at the same time points. For example: R0 (control) and RT (treat) in Bt-1 and S0 (control) and ST (treat) in Ye478.
Project description:Fusarium graminearum can infect maize stalk causing Gibberella stalk rot. We want to know the whole genome wide gene profiling when infecting maize stalk.
Project description:Transformation of the Arabidopsis ATHB17 gene into maize results in the expression of a truncated protein (smaller by 113 amino acids) that functions as a dominant-negative regulator that can modify activity of endogenous maize HD-Zip II transcription factors. This RNASeq experiment indicates that the observed effects of ATHB17d113 on the maize ear inflorescence and ear transcriptome are very small. Expression of ATHB17delta113 protein in maize leads to changes in ear growth resulting in increased ear size at early reproductive stages and, potentially increased sink size.
Project description:The present study profiled and analyzed gene expression of the maize ear at four key developmental stages. Based on genome-wide profile analysis, we detected differential mRNA of maize genes. Some of the differentially expressed genes (DEGs) were predicted to be potential candidates of maize ear development. Several well-known genes were found with reported mutants analyses, such as, compact plant2 (ct2), zea AGAMOUS homolog1 (zag1), bearded ear (bde), and silky1 (si1). MicroRNAs such as microRNA156 were predicted to target genes involved in maize ear development. Antisense transcripts were widespread throughout all the four stages, and are suspected to play important roles in maize ear development. Thus, identification and characterization of important genes and regulators at all the four developmental stages will contribute to an improved understanding of the molecular mechanisms responsible for maize ear development.
Project description:Transformation of the Arabidopsis ATHB17 gene into maize results in the expression of a truncated protein (smaller by 113 amino acids) that functions as a dominant-negative regulator that can modify activity of endogenous maize HD-Zip II transcription factors. This RNASeq experiment indicates that the observed effects of ATHB17d113 on the maize ear inflorescence and ear transcriptome are very small. Expression of ATHB17delta113 protein in maize leads to changes in ear growth resulting in increased ear size at early reproductive stages and, potentially increased sink size. Two ATHB17delta113 expressing events (Event 1 and Event 2) were compared to control plants (herein referred to as WT) in the context of Monsanto Elite Maize hybrid line NN6306. Three bioreps of both Ear inflorescence and Ear tissues were sampled for the WT and each of the two transgenic events.
Project description:This experiment is to assess the changes of maize genes expression in response to Fusarium graminearum stains wild-type PH-1 and Δcfem1 mutant. F. graminearum is the major casual fungal pathogen of Gibberella stalk rot on maize.
Project description:Fusarium graminearum can infect maize stalk causing Gibberella stalk rot. We want to know the whole genome wide gene profiling when infecting maize stalk. Using lasr capture microdisecction, we captured 8 time points infecting hyphae samples for maize stalk and after two-round amplification, we hybrid the aRNA to Affymetrix array.
Project description:The present study profiled and analyzed gene expression of the maize ear at four key developmental stages. Based on genome-wide profile analysis, we detected differential mRNA of maize genes. Some of the differentially expressed genes (DEGs) were predicted to be potential candidates of maize ear development. Several well-known genes were found with reported mutants analyses, such as, compact plant2 (ct2), zea AGAMOUS homolog1 (zag1), bearded ear (bde), and silky1 (si1). MicroRNAs such as microRNA156 were predicted to target genes involved in maize ear development. Antisense transcripts were widespread throughout all the four stages, and are suspected to play important roles in maize ear development. Thus, identification and characterization of important genes and regulators at all the four developmental stages will contribute to an improved understanding of the molecular mechanisms responsible for maize ear development. Seeds of the maize inbred line 18-599 (Maize Research Institute, Sichuan Agricultural University, Chengdu, China) were grown in a growth chamber at 24°C/18°C (day/night) with 12 h illumination per day. Ears were collected as described previously [10] at four developmental stages: the growth point elongation, spikelet differentiation, floret primordium differentiation, and the floret organ differentiation phases. In brief, ears were manually collected at the four developmental stages. All the samples were harvested and immediately frozen in liquid nitrogen, and stored at -80°C until used for RNA isolation.
Project description:Ustilago maydis is a biotrophic fungus that causes tumor formation on all aerial parts of maize. U. maydis secretes effector proteins during penetration and colonization to successfully overcome the plant immune response and reprogram host physiology to promote infection. In this study, we functionally characterized the U. maydis effector protein Topless (TPL) interacting protein 6 (Tip6). We found that Tip6 interacts with the N-terminus of ZmTPL2 through its two EAR (Ethylene-responsive element binding factor-associated amphiphilic repression) motifs. We show that the EAR motifs are essential for the virulence function of Tip6 and critical for altering the nuclear distribution pattern of ZmTPL2. We propose that Tip6 mimics the recruitment of ZmTPL2 by plant repressor proteins, thus disrupting host transcriptional regulation. We show that a large group of AP2/ERF B1 subfamily transcription factors are misregulated in the presence of Tip6. Our study suggests a regulatory mechanism where the U. maydis effector Tip6 utilizes repressive domains to recruit the corepressor ZmTPL2 to disrupt the transcriptional networks of the host plant.