Project description:Genome sequence of Candidatus Westeberhardia cardiocondylae strain obscurior, a mutualistic endosymbiont from the invasive ant Cardiocondyla obscurior
Project description:Social insect queens and workers can engage in conflict over reproductive allocation when they have different fitness optima. Here, we show that queens have control over queen-worker caste allocation in the ant Cardiocondyla obscurior, a species in which workers lack reproductive organs. We describe crystalline deposits that distinguish castes from the egg stage onwards, providing the first report of a discrete trait that can be used to identify ant caste throughout pre-imaginal development. The comparison of queen and worker-destined eggs and larvae revealed size and weight differences in late development, but no discernible differences in traits that may be used in social interactions, including hair morphology and cuticular odours. In line with a lack of caste-specific traits, adult workers treated developing queens and workers indiscriminately. Together with previous studies demonstrating queen control over sex allocation, these results show that queens control reproductive allocation in C. obscurior and suggest that the fitness interests of colony members are aligned to optimize resource allocation in this ant.
Project description:The evolution of eukaryotic organisms is often strongly influenced by microbial symbionts that confer novel traits to their hosts. Here we describe the intracellular Enterobacteriaceae symbiont of the invasive ant Cardiocondyla obscurior, 'Candidatus Westeberhardia cardiocondylae'. Upon metamorphosis, Westeberhardia is found in gut-associated bacteriomes that deteriorate following eclosion. Only queens maintain Westeberhardia in the ovarian nurse cells from where the symbionts are transmitted to late-stage oocytes during nurse cell depletion. Functional analyses of the streamlined genome of Westeberhardia (533 kb, 23.41% GC content) indicate that neither vitamins nor essential amino acids are provided for the host. However, the genome encodes for an almost complete shikimate pathway leading to 4-hydroxyphenylpyruvate, which could be converted into tyrosine by the host. Taken together with increasing titers of Westeberhardia during pupal stage, this suggests a contribution of Westeberhardia to cuticle formation. Despite a widespread occurrence of Westeberhardia across host populations, one ant lineage was found to be naturally symbiont-free, pointing to the loss of an otherwise prevalent endosymbiont. This study yields insights into a novel intracellular mutualist that could play a role in the invasive success of C. obscurior.