Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:Genome-wide analysis of translation has the potential to provide major contributions in understanding the pathophysiology of infection processes, given the complex interplay between pathogens and host cells. This study uncovers the reshaping undergoing in the translational control system of the host in response to staphylococcal α-hemolysin oligomers (rAHL). Keywords: translatome profiling, polysomal profiling, polysomal RNA, translational control, translational profiling, polysome profiling, post-transcriptional regulation, staphylococcal α-hemolysin, pore forming toxins, PTF.
Project description:The goal of our study was to perform RNA sequencing of whole transcripts to determine and compare the real length of 3’UTRs among closely-related staphylococcal species. We found that most of the mRNAs encoding orthologous genes in staphylococcal species have 3’UTRs with different lengths in addition to sequence variation.
Project description:This study examined whole genome sequencing, RNAseq and methylation data for melanoma subtypes. Illumina MethylationEPIC BeadChip array analysis of 144 melanoma tumors was carried out as part of the study.
Project description:Genome-wide analysis of translation has the potential to provide major contributions in understanding the pathophysiology of infection processes, given the complex interplay between pathogens and host cells. Informations about the translational state of mRNAs or the activity of RNA binding proteins and ncRNAs after treatment with sublytic doses of pore forming toxins are completely missing. This study uncovers the reshaping undergoing in the translational control system of the host in response to sublytic doses of staphylococcal α-hemolysin (AHL). Keywords: translatome profiling, polysomal profiling, polysomal RNA, translational control, translational profiling, polysome profiling, post-transcriptional regulation, staphylococcal α-hemolysin, pore forming toxins, PTF.
Project description:Genome-wide analysis of translation has the potential to provide major contributions in understanding the pathophysiology of infection processes, given the complex interplay between pathogens and host cells. This study uncovers the reshaping undergoing in the translational control system of the host in response to staphylococcal α-hemolysin oligomers (rAHL). Keywords: translatome profiling, polysomal profiling, polysomal RNA, translational control, translational profiling, polysome profiling, post-transcriptional regulation, staphylococcal α-hemolysin, pore forming toxins, PTF. The comparison between translatome and transcriptome profiling was used to discover mRNA-specific changes of the SH-SY5Y cells transcriptome and translatome in response to staphylococcal α-hemolysin oligomers (rAHL). To identify translationally regulated mRNAs, gene expression signals derived from the polysomal mRNA populations were compared by microarrays analysis to those obtained from total RNAs. Polysomal mRNA and total mRNA were isolated from SH-SY5Y cells treated with 3nM of extracted oligomers (rAHL) for 2 hours. Cells lysates were collected from untreated cells (control) and from treated cells. All experiments were run in biological triplicates.
Project description:This study involves characterization of four head and neck cancer cell lines -- NT8e, OT9, AW13516 and AW8507, established from Indian head and neck cancer patients, using SNP arrays, whole exome and whole transcriptome sequencing.