Project description:The tails of stage NF50 Xenopus tropicalis tadpoles were amputated and samples were collected at 0 and 3 days post amputation. 10 spinal cords were isolated for each time point. After cell dissociation, single cell RNAseq was performed using 10X Genomics platform
Project description:The tails of stage NF50 Xenopus tropicalis were amputated and samples were collected at 0, 1 and 3 days post amputation. About 20 spinal cords were isolated manually and pooled for each sample. in biological triplicates at each time point.
Project description:Mice lacking the developmental axon guidance molecule EphA4 have previously been shown to exhibit extensive axonal regeneration and functional recovery following spinal cord injury. To assess mechanisms by which EphA4 may modify the response to neural injury, a microarray was performed on spinal cord tissue from mice with spinal cord injury and sham injured controls. RNA was purified from spinal cords of adult EphA4 knockout and wild-type mice four days following lumbar spinal cord hemisection or laminectomy only and was hybridised to Affymetrix All-Exon Array 1.0 GeneChips. While subsequent analyses indicated that several pathways were altered in EphA4 knockout mice, of particular interest was the attenuated or otherwise altered expression of a number of inflammatory genes, including Arginase 1, expression of which was lower in injured EphA4 knockout compared to wild-type mice. Immunohistological analyses of different cellular components of the immune response were then performed in injured EphA4 knockout and wild-type spinal cords. While numbers of infiltrating CD3+ T cells were low in the hemisection model, a robust CD11b+ macrophage / microglial response was observed post-injury. There was no difference in the overall number or spread of macrophages / activated microglia in injured EphA4 knockout compared to wild-type spinal cords at two, four or fourteen days post-injury, however a lower proportion of Arginase-1 immunoreactive macrophages / activated microglia was observed in EphA4 knockout spinal cords at four days post-injury. Subtle alterations in the neuroinflammatory response in injured EphA4 knockout spinal cords may contribute to the regeneration and recovery observed in these mice following injury. Comparison was made between gene expression in wild-type and knockout samples both before and after injury. 3 replicates per group.
Project description:Spinal cord injury (SCI) induces a sequence of endogenous autodestructive changes known as secondary injury, as well as reactive biochemical changes that are neuroprotective and/or promote recovery. All these responses to SCI are, in part re?ected in changes in gene expression. In order to assess changes in gene expression involved in the regeneration process,microarrays were performed as a function of time after SCI for the various treatments. Three groups rats(i.e.NT-3-chitosan tube group, tube alone group and lesion control group) used to interrogate Affymetrix (SantaClara,CA) GeneChips were sacrificed by intraperitoneally over dose injecting 6% chloral hydrate at 1, 3, 10, 20, 30, and 90 d after the operation. The spinal cords were surgically re-exposed and spinal tissue including dura and meninges was dissected into three blocks, i.e. 5 mm long segments in the lesioned area (M), rostral to the lesioned area (R), and caudal to the lesioned areas (C) were sampled under RNAase-free conditions. The samples were quick frozen and kept in liquid nitrogen.
Project description:Salamanders have the remarkable ability to functionally regenerate after spinal cord transection. In response to injury, GFAP+ glial cells in the axolotl spinal cord proliferate and migrate to replace the missing neural tube and create a permissive environment for axon regeneration. In this paper we show that miR-200a acts to repress expression of Brachyury in sox2 positive progenitor cells in the axoltol spinal cord after spinal cord injury but after tail amputation when multiple tissue types must be regenerated then mir-200a is downregualted allowing progenitor cells in the spinal cord to naturally become bipotent progenitors which can give rise to muscle and neural cell types. When miR-200a is inhibited after spinal cord injury then these cells also express BRachyury cna can form muscle.
Project description:Mice lacking the developmental axon guidance molecule EphA4 have previously been shown to exhibit extensive axonal regeneration and functional recovery following spinal cord injury. To assess mechanisms by which EphA4 may modify the response to neural injury, a microarray was performed on spinal cord tissue from mice with spinal cord injury and sham injured controls. RNA was purified from spinal cords of adult EphA4 knockout and wild-type mice four days following lumbar spinal cord hemisection or laminectomy only and was hybridised to Affymetrix All-Exon Array 1.0 GeneChips. While subsequent analyses indicated that several pathways were altered in EphA4 knockout mice, of particular interest was the attenuated or otherwise altered expression of a number of inflammatory genes, including Arginase 1, expression of which was lower in injured EphA4 knockout compared to wild-type mice. Immunohistological analyses of different cellular components of the immune response were then performed in injured EphA4 knockout and wild-type spinal cords. While numbers of infiltrating CD3+ T cells were low in the hemisection model, a robust CD11b+ macrophage / microglial response was observed post-injury. There was no difference in the overall number or spread of macrophages / activated microglia in injured EphA4 knockout compared to wild-type spinal cords at two, four or fourteen days post-injury, however a lower proportion of Arginase-1 immunoreactive macrophages / activated microglia was observed in EphA4 knockout spinal cords at four days post-injury. Subtle alterations in the neuroinflammatory response in injured EphA4 knockout spinal cords may contribute to the regeneration and recovery observed in these mice following injury.
Project description:Label-free mass spectrometry-based quantitative proteomics was applied to a larval zebrafish spinal cord injury model, which allows axon regeneration and functional recovery within two days (days post lesion; dpl) after a spinal cord transection in 3 day-old larvae (dpf). Proteomic profiling of the lesion site was performed at 1 dpl and 2 dpl as well as corresponding age-matched unlesioned control tissue (4 dpf as control for 1 dpl; 5 dpf as control for 2 dpl).
Project description:This submission is a dataset of two modalities, single-nucleus transcriptomics and single-nuclei spatial transcriptomics in the spinal cords of mice. The single-nuclei transcriptomics data is harvested and profiled using 10x Genomics Chromium Single Cell Kit Version. The single-nuclei spatial transcriptomics data is harvested and profiled using Visium Spatial Gene Expression.
Project description:This experiment aims at characterizing the transcriptome of embryonic mouse dorsal spinal cord. Dorsal spinal cords dissected from litters of E14.5 wild type embryos of unknown sex were processed for RNA extraction using Trizol and RNeasy Mini kit (Qiagen) extraction procedures. Five replicates of wild type embryos were analyzed, each sample with tissue pooled from three embryos.