Project description:Sevcikova et al., Pluteus keselakii (Pluteaceae, Agaricales), a new species in section Celluloderma Phytotaxa 432 (2), 181-189 (2020)
Project description:The brushtail possum, Trichosurus vulpecula, is threatened in parts of its native range in Australia, but has also become a devastating mammalian pest following introduction into New Zealand from the mid 1800s. We have completed the first chromosome-level assembly of the possum genome and, using nuclear and mitochondrial analyses, traced southern New Zealand possums to distinct Tasmanian and mainland Australian subspecies, which have subsequently hybridised. This admixture is reflected in high levels of genetic diversity within New Zealand populations despite a founding bottleneck. Functional genomics revealed unique adaptations to altricial birth and extending weaning, including novel chemo-sensory genes, and at least four genes with imprinted, parent-specific expression not yet detected in other species (MLH1, EPM2AIP1, UBP1 and GPX7). We found that reprogramming of possum germline imprints and the wider epigenome was similar to eutherian mammals, except onset occurs after birth. Together, our data and analysis is useful for genetic-based control and conservation of possums, and contributes to understanding of the evolution of novel mammalian epigenetic traits such as germline methylation erasure and genomic imprinting.
Project description:The brushtail possum, Trichosurus vulpecula, is threatened in parts of its native range in Australia, but has also become a devastating mammalian pest following introduction into New Zealand from the mid 1800s. We have completed the first chromosome-level assembly of the possum genome and, using nuclear and mitochondrial analyses, traced southern New Zealand possums to distinct Tasmanian and mainland Australian subspecies, which have subsequently hybridised. This admixture is reflected in high levels of genetic diversity within New Zealand populations despite a founding bottleneck. Functional genomics revealed unique adaptations to altricial birth and extending weaning, including novel chemo-sensory genes, and at least four genes with imprinted, parent-specific expression not yet detected in other species (MLH1, EPM2AIP1, UBP1 and GPX7). We found that reprogramming of possum germline imprints and the wider epigenome was similar to eutherian mammals, except onset occurs after birth. Together, our data and analysis is useful for genetic-based control and conservation of possums, and contributes to understanding of the evolution of novel mammalian epigenetic traits such as germline methylation erasure and genomic imprinting.
Project description:Skin cancer is the most prevalent cancer in humans, especially in the United States, Australia, and New Zealand. Australia and New Zealand are the two countries with the highest rates of skin cancer in the world, about four times higher than the United States, the United Kingdom and Canada. According to statistics, one American dies of skin cancer every hour. Studies have shown that ultraviolet radiation is the main cause of skin cancer, and ultraviolet rays are mainly divided into UVA, UVB and UVC according to wavelength, UVA and UVB can cause DNA damage, and UVB is the main factor that induces skin cancer. UVB is primarily a direct damage to cellular DNA and generally includes the formation of pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs). UVB can also cause mutations in tumor suppressor genes such as p53, ptch, and ras. These bases the mutation will promote the activation of related signaling pathways, thereby inducing the production of tumors.In this study, we will use gene chip technology to screen out UVB-sensitive genes, and then select the genes of the UVB-sensitive GPCR family from these genes, and further use PCR for verification, so as to identify UVB-sensitive GPCRs, which will provide a basis for further experimental research.