Project description:This SuperSeries is composed of the following subset Series: GSE34280: Clonal Selection Drives Genetic Divergence of Metastatic Medulloblastoma [Affymetrix SNP6 Arrays] GSE34355: Clonal Selection Drives Genetic Divergence of Metastatic Medulloblastoma [Illumina Infinium HumanMethylation27 Beadchip v1.2] Refer to individual Series
Project description:Diverse regulatory mechanisms enable precise spatio-temporal control of gene expression across developmental stages, tissues, and sexes, contributing to the proper development of the organism. Evolutionary divergence leads to species-specific gene expression patterns, even in preserved developmental structures, due to regulatory changes that can disproportionately influence subsets of developmental genetic networks. Here we quantify the evolution of sex-biased and tissue-biased transcriptomes from two tissue types (gonad and soma) for each of two sexes (male and female) from two of the closest known sister species of Caenorhabditis nematodes (C. remanei and C. latens). Differential gene expression and co-expression network analyses identify gene sets with distinct transcriptomic profiles, revealing widespread divergence between these morphologically and developmentally cryptic sister species. The transcriptomic divergence occurs despite most genes showing conserved expression across tissues and sexes. These observations implicate shared selection pressures related to tissue and sex differences as outweighing species-specific selection and developmental system drift in shaping overall transcriptome profiles. Although developmentally-plastic tissue-biased expression profiles are mostly conserved between species, we find that sex-biased genes, particularly male-biased genes, contribute disproportionately to species-differences in gene expression, consistent with a disproportionate role for male-biased selection driving gene expression divergence.
Project description:The interplay between phenotypic plasticity and adaptive evolution has long been an important topic of evolutionary biology. This process is critical to our understanding of a species evolutionary potential in light of rapid climate changes. Despite recent theoretical work, empirical studies of natural populations, especially in marine invertebrates, are scarce. In this study, we investigated the relationship between adaptive divergence and plasticity by integrating genetic and phenotypic variation in Pacific oysters from its natural range in China. Genome resequencing of 371 oysters revealed unexpected fine-scale genetic structure that is largely consistent with phenotypic divergence in growth, physiology, thermal tolerance and gene expression across environmental gradient. These findings suggest that selection and local adaptation are pervasive and together with limited gene flow shape adaptive divergence. Plasticity in gene expression is positively correlated with evolved divergence, indicating that plasticity is adaptive and likely favored by selection in organisms facing dynamic environments such as oysters. Divergence in heat response and tolerance implies that the evolutionary potential to a warming climate differs among oyster populations. We suggest that trade-offs in energy allocation are important to adaptive divergence with acetylation playing a role in energy depression under thermal stress.
Project description:Theory predicts that when populations are established by few individuals, random founder effects can facilitate rapid phenotypic divergence even in the absence of selective processes. However, empirical evidence from historically documented colonisations suggest that, in most cases, drift alone is not sufficient to explain the rate of morphological divergence. Here, using the human-mediated introduction of the silvereye (Zosterops lateralis) to French Polynesia, which represents a potentially extreme example of population founding, we reassess the potential for morphological shifts to arise via drift alone. Despite only 80 years of separation from their New Zealand ancestors, French Polynesian silvereyes displayed significant changes in body and bill size and shape, most of which could be accounted for by drift, without the need to invoke selection. However, signatures of selection at genes previously identified as candidates for bill size and body shape differences in a range of bird species, also suggests a role for selective processes in driving morphological shifts within this population. Twenty-four SNPs in our RAD-Seq dataset were also found to be strongly associated with phenotypic variation. Hence, even under population founding extremes, when it is difficult to reject drift as the sole mechanism based on rate tests of phenotypic shifts, the additional role of divergent natural selection in novel environments can be revealed at the level of the genome.
Project description:Although not all sex-dependent gene expression is adaptive, it is likely an important genomic mechanism that allows each sex to independently adapt to environmental changes. Among Drosophila species, sex-biased genes display remarkably consistent evolutionary patterns; male-biased genes evolve faster than unbiased genes in both coding sequence and expression level, suggesting sex-differences in selection through time. However, comparatively little is known of the evolutionary process shaping sex-biased expression within species. Latitudinal clines offer an opportunity to examine how changes in key ecological parameters also influence sex-specific selection and the evolution of sex-biased gene expression. We assayed male and female gene expression in Drosophila serrata along a latitudinal gradient in eastern Australia spanning most of its endemic distribution. Analysis of 11,631 genes across eight populations revealed strong sex differences in the frequency, mode, and strength of divergence. Divergence was far stronger in males than females and while latitudinal clines were evident in both sexes, male divergence was often population-specific, suggesting responses to localized selection pressures that do not covary predictably with latitude. While divergence was enriched for male-biased genes, there was no overrepresentation of X-linked genes in males. By contrast, X-linked divergence was elevated in females, especially for female biased genes. Many genes that diverged in D. serrata have homologs also showing latitudinal divergence in D. simulans and D. melanogaster on other continents, likely indicating parallel adaptation in these distantly related species. Our results suggest that sex differences in selection play an important role in shaping the evolution of gene expression over macro- and micro-ecological spatial scales.
Project description:Ten populations were evolved for 6,000 generations. Five had strong selection for sporulation, imposed partially by their cultivation in sporulation-inducing medium, while the other five populations had relaxed selection for sporulation, by cultivating them in sporulation-repressing medium. Batch cultures were diluted 1:100 daily for approximately 892 days. In the five populations with relaxed selection for sporulation, sporulation ability was eventually lost. Keywords: comparative genome hybridization and transcriptome divergence